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Organizing Time Exchanges: 
Lessons from Matching Markets†

By Tommy Andersson, Ágnes Cseh, Lars Ehlers, and Albin Erlanson*

This paper considers time exchanges via a common platform (e.g.,
markets for exchanging time units, positions at education institutions, 
and tuition waivers). There are several problems associated with
such markets, e.g., imbalanced outcomes, coordination problems, 
and inefficiencies. We model time exchanges as matching markets 
and construct a non-manipulable mechanism that selects an indi-
vidually rational and balanced allocation that maximizes exchanges 
among the participating agents (and those allocations are efficient).
This mechanism works on a preference domain whereby agents 
classify the goods provided by other participating agents as either 
unacceptable or acceptable, and for goods classified as acceptable, 
agents have specific upper quotas representing their maximum needs. 
(JEL C78, D47, D82)

This paper considers time exchanges, i.e., markets where agents have initial
endowments (that they wish to exchange with other agents), and there is a cen-

tral organization overseeing the exchanges. Three well-known time exchange mar-
kets are (i) the Erasmus program, where more than 5,000 European higher education
institutions across 37 countries participate to exchange students amongst each other 
for shorter time periods;1 (ii) the US-based program The Tuition Exchange, Inc.
(TTEI), where tuition waivers can be used by family members of faculty to attend
colleges without paying tuition fees (Dur and Ünver 2019); and (iii) time banks,
where groups of individuals and/or organizations set up common platforms to trade
services among themselves (Cahn 2011). Even if many exchange systems have been
operating for decades, we argue that the absence of a centralized market structure is 

1 See https://www.erasmusprogramme.com/post/what-is-the-erasmus-programme (retrieved September 1, 2019).

* Andersson: Department of Economics, Lund University, PO Box 7082, SE-222 07 Lund, Sweden (email: 
tommy.andersson@nek.lu.se); Cseh: Centre for Economic and Regional Studies, Institute of Economics, Toth
Kalman utca 4 1097 Budapest, Hungary, and University of Potsdam, Hasso Plattner Institute (email: cseh.agnes@
krtk.mta.hu); Ehlers: Département de Sciences Économiques, Université de Montréal, C.P. 6128, Montréal, Quebec 
H3C 3J7, Canada (email: lars.ehlers@umontreal.ca); Erlanson: Department of Economics, University of Essex,
Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom (email: albin.erlanson@essex.ac.uk). Michael Ostrovsky
was coeditor for this article. We are grateful to four anonymous referees, Péter Biró, Jens Gudmundsson, and 
Flip Klijn for many useful and constructive comments. All authors gratefully acknowledge financial support from 
the Jan Wallander and Tom Hedelius Foundation (P2018–0100). Andersson is also grateful to Ragnar Söderbergs
Stiftelse (E8/13) for financial support. Cseh was supported by the Hungarian Academy of Sciences (KEP-6/2019),
its Momentum Programme (LP2016-3/2016), its János Bolyai Research Fellowship, and OTKA grant K128611.
Ehlers is grateful to the SSHRC (Canada) and the FRQSC (Québec) for financial support.

† Go to https://doi.org/10.1257/mic.20180236 to visit the article page for additional materials and author  
disclosure statement(s) or to comment in the online discussion forum.

https://doi.org/10.1257/mic.20180236
https://www.erasmusprogramme.com/post/what-is-the-erasmus-programme
mailto:tommy.andersson@nek.lu.se
mailto:cseh.agnes@krtk.mta.hu
mailto:cseh.agnes@krtk.mta.hu
mailto:lars.ehlers@umontreal.ca
mailto:albin.erlanson@essex.ac.uk
https://doi.org/10.1257/mic.20180236


VOL. 13 NO. 1� 339ANDERSSON ET AL.: ORGANIZING TIME EXCHANGES

a source of inefficiency and that it may lead to “unbalanced” exchanges. These prob-
lems will ultimately threaten the long-run sustainability of the exchange market. 
Given this observation, we propose a centralized market structure where exchanges 
are identified using a “priority mechanism” that satisfies a number of desirable prop-
erties on a reduced, yet relevant, preference domain.

As claimed above, there are reasons to believe that these exchange markets often 
are less efficient than centralized markets. First, centralized and computer-based 
clearinghouses typically have lower overhead costs than their counterparts above. 
Second, it is challenging to identify and coordinate longer exchange cycles on 
“semi-centralized markets.” By centrally organizing exchanges, a formal match-
ing mechanism can identify and coordinate longer trading cycles based on reported 
preferences, which will lead to more efficient outcomes. Related to this, it is by no 
means clear that all reported information is taken into account when identifying 
exchanges in those markets, and this may, consequently, result in undesirable out-
comes for the participating agents.

Inefficiencies aside, a well-documented obstacle for the long-term sustainability 
of time exchange markets is the fact that the exchanges are not necessarily “bal-
anced.” For example, in the Erasmus and the TTEI programs, the participating edu-
cation institutions care about the balance of the incoming and outgoing students as 
there are no monetary transfers between participating institutions. Yet, there is still 
a documented imbalance in both these programs as described in Dur and  Ünver 
(2019). Similarly, members of time banks are concerned about “time balance” since 
they do not wish to provide more time to the bank than they get back in return. Still, 
Ozanne (2010) concludes that time bank members often experience that time credits 
are comparatively easy to earn but harder to spend, i.e., that most members run a 
“time deficit.” The lack of balance may discourage participation in these types of 
exchange markets, which ultimately threatens their long-term sustainability.

To overcome some of these problems associated with time exchange markets, this 
paper proposes a redesign whereby a central planner identifies exchanges based on 
a “priority mechanism” (discussed below). This mechanism identifies an allocation, 
i.e., a formal description of all exchanges, based on the information reported by 
the agents. The identified allocation only contains desirable (individually rational) 
exchanges; it is balanced and guarantees a maximal number of exchanges (the latter 
property implies efficiency on the considered preference domains). Given the inter-
est in individually rational, efficient, and balanced allocations, a first observation is 
that such allocations always exist on the general preference domain. This follows 
since the allocation in which there are no exchanges (i.e., when all agents keep their 
initial endowments) is individually rational and satisfies balancedness. The conclu-
sion then follows directly from the observation that the number of individually ratio-
nal and balanced allocations is finite, and, consequently, there exists an allocation 
among those which is efficient.

Even if an allocation satisfying the specific properties of interest can be identi-
fied, two new problems arise. First, it is often natural to require that the matching 
mechanisms should be designed in such a fashion that it is in the best interest for all 
agents to report their preferences truthfully (non-manipulability). This property is 
incompatible with individual rationality, efficiency, and balancedness on a general 
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preference domain (Sönmez 1999, corollary 1).2 Second, because participating 
agents can be involved in multiple exchanges (e.g., education institutions may 
exchange multiple students, time bank members may receive services from several 
distinct members, etc.), it is not clear that it is easy for agents to generally rank any 
two distinct allocations. In timebanking, for example, is an allocation whereby the 
agent receives two hours of hairdressing, two hours of gardening, and one hour of 
babysitting strictly better, equally good, or less preferred to an allocation where the 
agent receives one hour of hairdressing, one hour of gardening, and three hours of 
housekeeping? Hence, it may be difficult for agents to report their preferences when 
they are allowed to be involved in multiple cyclical exchanges with a number of 
distinct agents.

We show that if agent preferences satisfy certain conditions, the above two prob-
lems are no longer present. In some settings, the considered preference domain is 
clearly unrealistic (e.g., in exchange problems related to school choice). In other set-
tings, it provides a reasonably good approximation. Given a few assumptions related 
to, e.g., monotonicity, the restricted domain only requires that each agent (i) parti-
tions the other agents into two disjoint subsets containing agents that provide accept-
able and unacceptable goods and (ii) specifies an upper “exchange bound” for each 
acceptable agent. For example, an education institution in the Erasmus program 
may classify the other participating institutions as either acceptable or unacceptable 
to send their students to (an agent’s “horizontal” preference) but also an upper limit 
on how many students the institution at most wishes to send to each acceptable insti-
tution (an agent’s “vertical” preference). The reduced preference domain facilitates 
agents’ ability to report their preferences since they need only report the informa-
tion in (i) and (ii). Under all circumstances, it is most likely much easier to report 
preferences on this domain than on the general domain where agents need to report 
a complete ranking over all possible allocations. The considered reduced domain 
is an extension of the dichotomous domain that was popularized by Bogomolnaia 
and Moulin (2004).3

To solve the considered exchange problem, we define a “priority mechanism” 
and demonstrate that it can be formulated as a max-weight matching problem 
(Proposition 1). The definition of the priority mechanism is flexible since it can be 
adopted on both the restricted and the general preference domain. The main result 
shows that the priority mechanism is non-manipulable on the restricted preference 
domain and that it always makes a selection from the set of individually rational, 
maximal, and balanced allocations (Theorem 1). To prove this result, a number of 
novel graph theoretical techniques are needed. In particular, Appendix B demon-
strates an equivalence result between the max-weight matching problem and a 
circulation-based maximization problem.4

2 This impossibility should come as no surprise given the results in, e.g., Hurwicz (1972), Green and Laffont 
(1979), Roth (1982), Alcalde and Barberà (1994), Barberà and Jackson (1995), or Schummer (1999).

3 See Remark 2 for a discussion. Note also that the dichotomous domain is much smaller than the strict pref-
erence domain, but it is not a subset of the strict domain since indifference relations are allowed in the former but 
not in the latter domain.

4 The max-weight matching problem is considered in the main part of the paper since it is more intuitive and, 
moreover, can be introduced using minimal notation.
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A. Related Literature

Before providing some remarks on the existing market design literature, we 
note that this is not the first paper to use graph theoretical tools and, in particular, 
min-cost/max-weight formulations to solve matching problems. In the house allo-
cation problem with dichotomous preferences, for example, Aziz (2018) formalizes 
a bipartite graph and solves for a max-weight matching. His graph construction is 
based on having houses on one side and agents on the other side of the market. This 
is in contrast to the approach in this paper, where agents are cloned into copies of 
themselves. Furthermore, our graph construction and the solution are more intricate 
since agents can be involved in multiple exchanges. Because finding a maximal 
allocation is more involved in our problem and a potential manipulation is more 
complex, graph theoretical tools are used to prove the non-manipulability result. 
This is not needed in Aziz (2018) because he considers a less complex optimization 
problem.

The considered exchange market shares many features with some classical mar-
kets, previously considered in the matching literature, including, e.g., housing mar-
kets (Shapley and Scarf 1974, Abdulkadiroğlu and Sönmez 1999, Aziz 2018), organ 
markets (Roth, Sönmez, and Ünver 2004; Biró, Manlove, and Rizzi 2009; Ergin, 
Sönmez, and Ünver 2017), one-to-one matching problems (Gale and Shapley 1962), 
and markets for school seats (Abdulkadiroğlu and Sönmez 2003, Kesten and Ünver 
2015). There are, however, substantial differences between these problems and the 
one considered in this paper. For example, our model allows agents to be involved in 
multiple exchanges. In the school choice problem and the kidney exchange problem, 
in contrast, students are allocated at most one school seat, and each patient-donor 
pair is involved in at most one kidney exchange, respectively. Furthermore, in many 
matching problems including, e.g., the school choice problem and the house allo-
cation problem, agents’ (reported) preferences are typically strict, and indifference 
relations are consequently not allowed (while the kidney exchange problem is often 
defined on a dichotomous domain). Generalizations to allow for a weak prefer-
ence structure have recently been proposed by Alcalde-Unzu and Molis (2011) and 
Jaramillo and Manjunath (2012). However, both these papers only allow agents to 
trade at most one object.

By organizing the considered type of time exchanges as a matching market, it 
will have the structure of a many-to-many matching market. Such markets have pre-
viously been considered by, e.g., Echenique and Oviedo (2006), Konishi and Ünver 
(2006), and Hatfield and Kominers (2017). The papers closest to the model inves-
tigated in this study are Athanassoglou and Sethuraman (2011); Aziz (2015); Biró, 
Pápai, and Klijn (2017a, b); and Manjunath and  Westkamp (2019), which we 
describe next.

Athanassoglou and  Sethuraman (2011) and Aziz (2015) consider a housing 
market where initial endowments as well as allocations are described by a vec-
tor of fractions of the houses in the economy. The fractional setting makes it pos-
sible to analyze, e.g., efficiency based on (first-order) stochastic dominance, and 
it is demonstrated that the efficiency and fairness notions of interest conflict with 
non-manipulability. Even if a similar impossibility is present in our model, the 
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fractional setting is analyzed using different axioms and mechanisms. In addition, 
Athanassoglou and Sethuraman (2011) and Aziz (2015) are unable to find any pos-
itive results related to non-manipulability in their considered reduced preference 
domains.

Biró, Pápai, and Klijn (2017a) consider, as does this paper, a model where agents 
are endowed with multiple units of an indivisible and agent-specific good, searching 
for balanced allocations. In their reduced preference domain, agents have responsive 
preferences over consumption bundles. In this reduced domain, they demonstrate 
that for general capacity configurations, no mechanism satisfies individual ratio-
nality, efficiency, and non-manipulability. Given this negative finding, they charac-
terize the capacity configurations for which individual rationality, efficiency, and 
non-manipulability are compatible. They also demonstrate that for these capacity 
configurations, their mechanism is the unique mechanism that satisfies all three 
properties of interest. Hence, the main difference between this paper and Biró, 
Pápai, and Klijn (2017a) is that they consider a different preference domain and, 
consequently, need a different mechanism to escape the impossibility result.

Manjunath and Westkamp (2019) have independently considered a model of shift 
exchange that is closely related to the one considered here. In terms of our appli-
cation to time banks, the model of Manjunath and Westkamp allows each agent to 
supply distinct services as opposed to our model where each agent supplies the same 
service in multiple units. Like us, Manjunath and Westkamp require exchange to be 
balanced and consider a responsive preference domain classifying individual ser-
vices as either unacceptable or acceptable. Since agents are allowed to be indifferent 
between different services, their model is able to handle multiple copies of the same 
service. Manjunath and Westkamp (2019) show that a priority mechanism over the 
set of all individually rational allocations is efficient and strategy proof. The main 
differences between our work and that of Manjunath and Westkamp are that (i) their 
model is more general in that it allows agents to have distinct services, whereas each 
agent in our model has a specific service that comes in multiple copies, and (ii) their 
priority mechanism is only guaranteed to be Pareto efficient, while our mechanism 
satisfies the more demanding efficiency criterion of maximality (and as we show 
in Example 3, allocations from the two mechanisms can indeed be quite different). 
Finally, (iii) for the non-manipulability result, our proof techniques are very differ-
ent and are complementary.

B. Outline of the Paper

The remaining part of the paper is outlined as follows. Because exchange prob-
lems related to tuition exchange and the Erasmus program are well documented in the 
matching literature (see, e.g., Biró 2017; Delacrétaz 2019; Dur, Kesten, and Unver 
2018; Dur and Ünver 2019), Section  I will introduce a problem that has received 
much less attention, namely the timebanking problem. This section gives a detailed 
introduction to timebanking and provides some descriptive statistics of the time 
banks associated with TimeBanks USA. Section II introduces the general theoreti-
cal exchange framework and some basic definitions. Section III introduces priority 
mechanisms. The main results are presented in Section IV. Section V discusses the 
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main findings of the paper. Finally, Section VI concludes the paper. All proofs are 
relegated to the Appendix.

I.  Timebanking

Even if concepts closely related to timebanking date back to the nineteenth cen-
tury, timebanking was popularized and pioneered in the 1990s by Edgar Cahn and 
Martin Simon in the United States and the United Kingdom, respectively. However, 
it took another 20 years before the concept of timebanking had a serious impact 
in society. Dash and Sandhu (2018) report that the first time bank in the United 
Kingdom was set up in 1996, but only 2,200 persons had joined a time bank by 
2003. Eight years later, after additional experimentation, learning, and expansion, 
there were around 30,000 registered members in the United Kingdom, 30,000 reg-
istered members in the United States, and an additional 100,000 members scattered 
across 34 countries (Cahn 2011). This number has continued to grow. In 2014, there 
were around 35,000 members in the United Kingdom and even more in the United 
States.5

As explained in the introduction, a time bank is a group of individuals and/or 
organizations in a local community that set up a common platform to trade services 
among themselves. For example, a gardener who supplies two hours of time may, 
for example, receive two hours of childcare in return for his gardening services. 
Ozanne (2010) reported that the most commonly exchanged services included gar-
dening, giving lifts, befriending, do-it-yourself jobs, dog walking, and computer 
training. Members of a time bank earn one time credit for each time unit they supply 
to members of the bank. The earned credit can be spent to receive services from 
other members of the bank.6

In most time banks, a broker is employed to manage the bank, maintain the data-
base, record transactions, recruit new members, etc. (Seyfang 2003, 2004, Williams 
2004). A “matching system” helps the broker to coordinate requests for services 
with those who can provide them. In some time banks, this “system” is simple, and 
the broker manually matches requests with offers (Seyfang 2003). A few large time 
banks, including TimeBanks USA and Timebanking UK, have developed their own 
computer software where members can see what other members offer and keep 
track of their own activity. For example, the software used by TimeBanks USA 
(called Community Weaver 3) allows members to register their talents in 11 dif-
ferent categories including, e.g., education, transportation, business services, rec-
reation, and companionship. Each of these categories also has subcategories. The 
category “education,” for example, contains subcategories such as advocacy, com-
puters, languages, finances, and tutoring. When a member has registered her talents, 
she can start offering her services and begin making requests. An offer is a formal 
registration on the online platform that enables other members to see and request 
her talents. If a member approves a request, she receives the agreed amount of time 

5 These figures are from Boyle and Bird (2014) or www.timebanks.org (retrieved February 5, 2019).
6 Very few time banks are not based on a “one-for-one” time system, meaning that members of the time bank 

need not get one unit of time back for each unit of time they supply (Croall 1997).

http://www.timebanks.org


344	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2021

credits, and the member who receives the service is credited by the same amount of 
time credits.

Even if some time banks take advantage of computer software, it is difficult to 
coordinate longer trading cycles as members only can see their own activity. As a 
consequence, time bank members are naturally restricted to bilateral exchanges. 
Furthermore, it may be an obstacle for time bank members to report too “detailed” 
preferences if they potentially can be involved in multiple exchange cycles. This is 
also one of the reasons for considering a reduced preference domain (informally 
described in the introduction and formally defined in Section  IIB) whereby each 
time bank member partitions the other members of the bank (or, equivalently, the 
services they provide) into two disjoint subsets containing acceptable and unaccept-
able members and specifies an upper time bound for each acceptable member. The 
former condition reflects that an agent is not necessarily interested in all services 
provided in the bank. The latter condition captures the idea that an agent may, for 
example, be interested in at most one haircut but can accept up to ten hours of 
babysitting. This preference domain clearly facilitates time bank members’ ability 
to report their preferences, and it captures certain aspects of existing time banks, 
e.g., that members classify their services in various categories and that members 
request certain categories of services.

A. Timebanking and Society

The types of services provided by members of time banks, as exemplified above, 
are typically available and priced on competitive markets. Given this observation, 
it is natural to ask: what role do time banks play in society, and what explains the 
existence of time banks in a society where monetary transfers are available?

One potential explanation may be the documented fact (Collom 2007, Seyfang 
2003, Seyfang and Smith 2002) that time banks are very successful in attracting par-
ticipants from socially excluded groups and low-income communities, e.g., people 
on benefit programs, from low-income households, etc.7 That is, because most time 
bank members have small social networks and, in many cases, also lack both income 
and employment, timebanking is one way to be included in a social network and to 
increase welfare. Another way of expressing this observation is that persons from 
socially excluded groups often have a scarcity of traditional means of payment (i.e., 
“money”) but can gain access to an alternative currency by joining a time bank (i.e., 
“time credits”). This will increase their purchasing power. In fact, Collom (2007) 
has documented that the single most important reason for joining a time bank is to 
expand purchasing power through an alternative currency.

Another potential explanation is deeply rooted in the philosophy of time-
banking. As stated by one of its proponents, Cahn (2000), different fairness and 
equality notions are embedded in the five core values of timebanking: assets, 
redefining work, reciprocity, social networks, and respect. For example, and as 

7 Most studies in the existing literature, consequently, focus on socially excluded and low-income groups. An 
exception is Ozanne (2010), where it is demonstrated that time banks have provided high benefits in the form of 
social, human, physical, and cultural capital also within affluent groups.
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explained above, one of the fundamental ideas in timebanking is that one hour of 
service generates one time credit regardless of the provider or the nature of the ser-
vice performed. Consequently, even if services provided by time bank members are 
valued and priced differently on competitive markets, the timebanking philosophy 
prescribes that human beings share fundamental equality, and their services should 
therefore be “priced” equally (through a one-for-one time exchange system).

Furthermore, an integral part of these core values is to extend social networks, 
increase informal neighborhood support, and develop reciprocal relationships 
(Cahn 2000). One way to reach these goals is to provide a marketplace that is “less 
anonymous” than competitive markets and to more explicitly set up a market where 
people can meet physically and exchange services. In fact, Seyfang (2003) found 
that persons join time banks to meet other members, to help other members, to 
get more involved in the local neighborhood, etc. Similar motives are recorded by, 
e.g., Collom (2007) and Caldwell (2000). Related to this, Boyle, Clark, and Burns 
(2006) showed that time banks not only help their members to extend their social 
networks but also that time banks are an effective way of developing reciprocal rela-
tionships between members in the bank.

B. Organization and Descriptive Statistics of TimeBanks USA

To the best of our knowledge, there exists no public database that provides 
detailed statistics about time banks worldwide. To give the reader at least some idea 
about, e.g., the size and number of transactions in a time bank, this section provides 
some descriptive statistics of TimeBanks USA, the largest time bank operating in 
the United States.8 The data are from the period April 1, 2015 (when Community 
Weaver 3 was launched) to January 15, 2019 (when we collected the data).

TimeBanks USA currently has 107 branches in the United States spread out over 
33 states, and it also operates in Australia, Canada, France, Greece, Guatemala, 
Israel, New Zealand, South Africa, South Korea, and the United Kingdom (see 
Table 1). Even if not all registered branches are active, Table 2 provides some more 
detailed information about the active branches. As can be seen from the table, a time 
bank located in the United States has on average around 100 members and has, on 
average, performed 1,958 trades since April 2015. These trades involved on average 
7,736 time units per branch, meaning that each time exchange was, on average, for 
3.95 hours. As can also be seen from Table 2, the average time bank in the United 
States had 115.1 registered active offers and 115.5 active requests on January 15, 
2019. The figures from Table 2, therefore, roughly translate to each member, in an 
active branch, having, on average, had one active offer and one active request on 
January 15, 2019 (Timebanks 2019).

8 All data and documentation related to TimeBanks USA stated in this section  are available in the online 
Appendix.
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II.  The Model and Basic Definitions

This section introduces the exchange problem together with some definitions and 
axioms.

A. Agents, Bundles, and Allocations

Let ​N  = ​ {1, … , n}​​ denote the finite set of agents. Each agent ​i  ∈  N​ is endowed 
with ​​t​i​​  ∈  ℕ​ units of a good (or service) which can be used to exchange goods (or 
services) with agents in ​N​. One can, for example, think of these goods as positions 
at education institutions, tuition waivers, or time units. Let ​t = ​(​t​1​​, …  , ​t​n​​)​​ denote 
the vector of endowments. Because the exact nature of the goods is of secondary 
interest, the problem will be described in terms of the number of goods that an 
agent receives from and provides to other agents in ​N​. Let ​​x​ij​​​ denote the number of 
goods that agent ​i  ∈  N​ receives from agent ​j  ∈  N​, or, equivalently, the number of 
goods that agent ​j​ provides to agent ​i​. Here, ​​x​ii​​​ represents the number of goods that 
agent ​i  ∈  N​ receives from herself. It is assumed that ​​x​ij​​​ belongs to the set ​​ℕ​0​​​ of 
nonnegative integers that includes 0.9

The goods that agent ​i  ∈  N​ receives from the agents in ​N​ can be described by 
the bundle ​​x​i​​  = ​ (​x​i1​​, … , ​x​in​​)​​. The bundle where agent ​i  ∈  N​ keeps his initial 
endowment is denoted by ​​ω​i​​​ (where ​​ω​ii​​  = ​ t​i​​​ and ​​ω​ij​​  =  0​ for ​j  ≠  i​). An allocation 
​x  = ​ (​x​1​​, … , ​x​n​​)​​ is a collection of ​n​ bundles (one for each agent in ​N​).

9 In the timebanking application, one can think of ​​x​ij​​​ as a representation of standardized time units, e.g., 0 min-
utes for zero units, 30 minutes for one unit, 60 minutes for two units, etc.

Table 1—Descriptive Data of TimeBanks USA

Country Number of branches Active branches Represented in states/provinces/regions

United States 107 84 33 out of 50
New Zealand 30 28 7 out of 16
Canada 11 9 5 out of 10

Other countries 8 7 —

Source: The data were collected from www.timebanks.org on January 15, 2019 and are available in the online 
Appendix.

Table 2—Mean Summary Statistics for the Active Time Banks in Table 1

Country
Number of 
members

Number of 
exchanges

Number of 
hours exchanged

Active 
offers

Active 
requests

United States 98.9 (105.9) 1,957.8 (5,034.9) 7,736.0 (25,509.6) 115.1 (748.9) 115.5 (746.6)
New Zealand 158.7 (189.7) 1,913.4 (2,798.6) 10,568.9 (29,138.0) 25.9 (23.7) 28.2 (28.1)
Canada 64.1 (64.9) 187.1 (255.3) 600.9 (1,019.7) 34.4 (41.6) 27.9 (38.9)

Other countries 113.7 (233.5) 1,464.3 (3,623.4) 5,401.7 (13,694.3) 1.6 (2.1) 2.0 (3.0)

Note: All values are mean values (standard deviation within brackets).

http://www.timebanks.org
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An allocation is feasible if

(1)	​​  ∑ 
j=1

​ 
n

  ​​ ​x​ij​​  = ​ t​i​​   for all i  ∈  N,​

(2)	 ​​ ∑ 
j=1

​ 
n

  ​​ ​x​ji​​  = ​ t​i​​   for all i  ∈  N.​

This means any agent ​i​ receives the same number of goods from other agents that 
the agent supplies to other agents (recall that an agent can keep parts of his initial 
endowment). In this sense, any feasible allocation satisfies the balancedness condi-
tions (1) and (2). In the remaining part of the paper, it is understood that any alloca-
tion is feasible. Let  denote the set of all feasible allocations.

B. Preferences and Preference Domains

A preference relation for agent ​i  ∈  N​ is a complete and transitive binary relation ​​R​i​​​ 
over feasible bundles such that ​​x​i​​ ​R​i​​ ​x​ i​ ′​​ whenever agent ​i​ finds bundle ​​x​i​​​ at least as good 
as bundle ​​x​ i​ ′​​. Let ​​P​i​​​ and ​​I​i​​​ denote the strict and the indifference part of ​​R​i​​​, respec-
tively. Let ​​​i​​​ denote the set of all preference relations of agent ​i  ∈  N​. A (preference) 
profile ​R​ is a list of individual preferences ​R = ​(​R​1​​, … , ​R​n​​)​​. The general domain of 
profiles is denoted by ​ = ​​1​​ × ⋯ × ​​n​​​. A profile ​R  ∈  ​ may also be written as ​​

(​R​i​​, ​R​−i​​)​​ when the preference relation ​​R​i​​​ of agent ​i  ∈  N​ is of particular importance.
A restricted preference domain ​​ ̃ ​   = ​​  ̃ ​​ 1​​ × ⋯ × ​​ ̃ ​​ n​​  ⊂  ​ will be considered 

for our main results. As explained in the introduction, this restricted domain is based 
on the idea that any preference relation ​​R​i​​  ∈ ​​  ̃ ​​ i​​​

	 (a)	 partitions the set of agents ​N\​{i}​​ into two disjoint sets containing acceptable 
and unacceptable agents (i.e., agents that provide acceptable and unaccept-
able goods), denoted by ​​A​i​​​(​R​i​​)​  ⊆  N\​{i}​​ and ​​U​i​​​(​R​i​​)​  =  N\​(​A​i​​​(​R​i​​)​ ∪ ​{i}​)​​,  
respectively, and

	 (b)	 associates with each acceptable agent ​j  ∈ ​ A​i​​​(​R​i​​)​​ an upper bound ​​​t ̄ ​​ij​​  ∈ ​ 핅​0​​​ 
on the number of goods that agent ​i​ at most would like to receive from agent ​j​.

Here, one may interpret (a) as agent ​i​’s “horizontal preference” over acceptable and 
unacceptable agents and (b) as agent ​i​’s “vertical preference” representing the max-
imal demand of each good provided by an acceptable agent. Then, for agent ​i  ∈  N​, 
the preference relation ​​R​i​​​ belongs to ​​​ ̃ ​​ i​​​ if for any allocations ​x​ and ​y​,

	 (i)	​​ ω​i​​ ​P​i​​ ​x​i​​​ if ​​x​ik​​  >  0​ for some ​k  ∈ ​ U​i​​​(​R​i​​)​​ or ​​x​ij​​  > ​​ t ̄ ​​ij​​​ for some ​j  ∈ ​ A​i​​​(​R​i​​)​​,

	 (ii)	​​ x​i​​ ​I​i​​ ​y​i​​​ if both ​​ω​i​​ ​P​i​​ ​x​i​​​ and ​​ω​i​​ ​P​i​​ ​y​i​​​,

	 (iii)	​​ y​i​​ ​P​i​​ ​x​i​​​ if ​​y​i​​ ​R​i​​ ​ω​i​​​, ​​x​i​​ ​R​i​​ ​ω​i​​​, and ​​∑ j∈​A​i​​​(​R​i​​)​​ 
 
 ​​ ​ y​ij​​  > ​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​ ​ x​ij​​​, or

	 (iv)	​​ y​i​​ ​I​i​​ ​x​i​​​ if ​​y​i​​ ​R​i​​ ​ω​i​​​, ​​x​i​​ ​R​i​​ ​ω​i​​​, and ​​∑ j∈​A​i​​​(​R​i​​)​​ 
 
 ​​ ​ y​ij​​  = ​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​ ​ x​ij​​​.
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The first condition states that an agent strictly prefers not to be involved in an 
exchange if (α) the agent receives goods from unacceptable agents, or (β ) the num-
ber of goods provided by an acceptable agent exceeds the upper bound. The second 
condition means that an agent is indifferent between any two bundles where (α) 
and/or (β ) holds. The last two conditions reflect a monotonicity property and state 
that an agent weakly prefers bundles with weakly more acceptable agents whenever 
bundles do not contain any unacceptable agents and as long as the bounds ​​​t ̄ ​​ij​​​ are not 
exceeded for the acceptable agents contained in the bundle.

Remark 1: For the restricted domain ​​ ̃ ​​ , a report ​​R​i​​​ for agent ​i  ∈  N​ is 
given by a set of acceptable agents ​​A​i​​​(​R​i​​)​​ together with an upper bound ​​​t ̄ ​​ij​​​ for 
each ​j  ∈ ​ A​i​​​(​R​i​​)​​. An equivalent formulation of the reported preference for agent  
​i  ∈  N​ is a vector ​​​t ̄ ​​i​​  = ​ (​​t ̄ ​​i1​​, … , ​​t ̄ ​​in​​)​  ∈ ​ 핅​ 0​ 

n​​ where ​​​t ̄ ​​ii​​  = ​ t​i​​​. Then ​​​t ̄ ​​ij​​  =  0​ stands for  
​j  ∈ ​ U​i​​​(​R​i​​)​​, i.e., agent ​i​ is willing to accept at most zero units from agent ​j​. Whether 
the first or the second formulation is used is just a matter of choice.

Remark 2: For any agent ​i  ∈  N​ and ​​R​i​​  ∈ ​​  ̃ ​​i​​​, the preference ​​R​i​​​ is dichotomous 
over single agents because agents are partitioned into agents that provide accept-
able and unacceptable goods. The preference ​​R​i​​​ is polychotomous over bundles 
in the following way: for any ​h  =  0, 1, … , min​{​t​i​​, ​∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​​​ t ̄ ​​ij​​}​  =  m​, all alloca-

tions ​x​ and ​y​ such that ​​x​ij​​  ≤ ​​ t ̄ ​​ij​​​ and ​​y​ij​​  ≤ ​​ t ̄ ​​ij​​​ for all ​j ∈ ​A​i​​​(​R​i​​)​​, ​​x​ik​​  =  0  = ​ y​ik​​​ for all  
​k  ∈ ​ U​i​​​(​R​i​​)​​ and ​​∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​​ y​ij​​  =  h  = ​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​​ x​ij​​​ are ranked indifferent by ​​R​i​​​. Let  

​​(h)​​ denote this indifference class. Then under ​​R​i​​​ all allocations in ​​(m)​​ are strictly 
preferred to all allocations in ​​(m − 1)​​, and in general, for ​h = 1, … , m​, under ​​R​i​​​ all 
allocations in ​​(h)​​ are strictly preferred to all allocations in ​​(h − 1)​​. Thus, ​​R​i​​​ con-
tains ​m + 2​ indifference classes (where ​​(0)​  = ​ {​ω​i​​}​​ and ​​ω​i​​​ is strictly preferred to all 
allocations where the agent receives goods from unacceptable agents or the number of 
goods provided by an acceptable agent exceeds the upper bound). In this sense, pref-
erences belonging to ​​​ ̃ ​​i​​​ are polychotomous over bundles (where the upper bounds are 
incorporated) and at the same time dichotomous over single agents.

C. Axioms and Mechanisms

Recall that ​​ denotes the set of all feasible allocations. Allocation ​x  ∈  ​ is 
individually rational if, for all ​i  ∈  N​, ​​x​i​​ ​R​i​​ ​ω​i​​​. Allocation ​x  ∈  ​ Pareto dominates 
allocation ​​x ′ ​ ∈ ​ if ​​x​i​​ ​R​i​​ ​x​ i​ ′​​ for all ​i ∈ N​ and ​​x​j​​ ​P​j​​ ​x​ j​ ′​​ for some ​j  ∈  N​. An allocation 
is efficient if it is not Pareto dominated by any feasible allocation. An allocation ​x​ 
is maximal at ​R​ if ​​∑ i∈N ​ 

 
 ​​​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​ ​ x​ij​​  ≥ ​ ∑ i∈N​ 

 
 ​​​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​ ​ x​ ij​ ′ ​​ for all individually ratio-

nal allocations ​​x ′ ​​. All individually rational and maximal allocations at profile 
​R  ∈ ​  ̃ ​​  are gathered in the set ​​(R)​  ⊂  ​. Note that ​​(R)​  ≠  ∅​ for all ​R  ∈ ​  ̃ ​​  and 
that any ​x  ∈  ​(R)​​ is efficient.10

10 If ​x​ is not efficient, then there exists an individually rational allocation ​​x ′ ​​ such that ​​x​ i​ ′​ ​R​i​​ ​x​i​​​ for all ​i  ∈  N​ 
and ​​x​ j​ ′​ ​P​j​​ ​x​j​​​ for some ​j  ∈  N​. But then ​​∑ i∈N​   ​​ ​ ∑ j∈​A​i​​​(​R​i​​)​​ 

  ​​  ​x​ij​​  <  ​∑ i∈N​   ​​ ​ ∑ j∈​A​i​​​(​R​i​​)​​ 
  ​​  ​x​ ij​ ′ ​​, meaning that ​x​ is not maximal, which 

is a contradiction.
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A mechanism φ with domain ​​ ̃ ​​  chooses for any profile ​R  ∈ ​  ̃ ​​  a feasible alloca-
tion ​φ​(R)​  ∈  ​. Mechanism φ is manipulable at profile ​R  ∈ ​  ̃ ​​  by an agent ​i  ∈  N​ 
if there exists ​​R​ i​ ′​​ such that ​​R ′ ​ = ​(​R​ i​ ′​, ​R​−i​​)​ ∈ ​ ̃ ​​ , and for ​x = φ​(R)​​ and ​​x ′ ​ = φ​(​R ′ ​)​​ 
we have ​​x​ i​ ′​ ​P​i​​ ​x​i​​​. If mechanism φ is not manipulable by any agent ​i  ∈  N​ at any pro-
file ​R  ∈ ​  ̃ ​​ , then φ is non-manipulable (on the domain ​​ ̃ ​​ ).

III.  Priority Mechanisms

Any priority mechanism uses a priority ordering. This ordering may be deduced 
from a lottery or from a schematic update based on previous allocation rounds. 
Let ​π  :  N  ↦  N​ be an exogenously given priority ordering where the highest-ranked 
agent is ​i  ∈  N​ with ​π​(i)​  =  1​, the second-highest-ranked agent is ​​i ′ ​  ∈  N​ with 
​π​(​i ′ ​)​  =  2​, and so on.

Given ​R  ∈ ​  ̃ ​​ , ​i  ∈  N​, and ​​​​ ∗​  ⊆  ​(R)​​, allocation ​x  ∈ ​ ​​ ∗​​ belongs to the 
set ​​​​ i,​​​ ∗​​​(R)​​ if ​​x​i​​ ​R​i​​ ​x​ i​ ′​​ for all ​​x ′ ​  ∈ ​ ​​ ∗​​, i.e., if allocation ​x​ is weakly preferred to any 
allocation in the set ​​​​ ∗​​ under preference ​​R​i​​​. In the special case where the set ​​​​ ∗​​ 
is based on the choice made by some agent ​​i ′ ​  ≠  i​ for some profile ​R  ∈ ​  ̃ ​​ , i.e., 
where ​​​​ ∗​  = ​ ​​ ​i ′ ​,​​​ ∗∗​​​(R)​​ for some ​​​​ ∗∗​  ⊆  ​(R)​​, the set ​​​​ i,​​​ ∗​​​(R)​​ is denoted by 
​​​​ i,​i ′ ​​​(R)​​.

DEFINITION 1: An allocation ​x  ∈  ​(R)​​ is agent-​i​-optimal at profile ​R  ∈ ​  ̃ ​​ 
if ​x  ∈ ​ ​​ i,​(R)​​​(R)​​.

Note the difference between the sets ​​​​ i,​(R)​​​(R)​​ and ​​​​ i,​​​ ∗​​​(R)​​. The former set 
contains all agent i’s most preferred allocations in the set ​​(R)​​, whereas the latter 
set contains all agent i’s most preferred allocations in a subset ​​​​ ∗​​ of ​​(R)​​.

DEFINITION 2: Let ​π​ be a priority ordering and ​N  = ​ {​i​1​​, …, ​i​n​​}​​ be such that 
​π​(​i​k​​)​  =  k​ for all ​k  =  1, … , n​. Then ​x  ∈  ​(R)​​ is a ​π​-priority allocation at 
profile ​R  ∈ ​  ̃ ​​ if

	 (i)	​ x​ belongs to ​​​​ ​i​1​​,​(R)​​​(R)​​,

	 (ii)	​ x​ belongs to ​​​​ ​i​k​​,​i​k−1​​​​(R)​​ for all ​k  =  2, … , n​.

One way to think about the set of priority allocations is the following. First, the 
highest-ranked agent identifies all his most preferred allocations in the set ​​(R)​​. 
Then, the agent with the second-highest priority identifies all his most preferred 
allocations in the set identified by the highest-ranked agent; then, the agent with the 
third-highest priority identifies all his most preferred allocations in the set identified 
by the second-highest-ranked agent, and so on. Formally, this means that if ​x​ is 
a ​π​-priority allocation, then

(3) 	 ​x  ∈ ​ ​​ ​i​n​​,​i​n−1​​​​(R)​  ⊆ ​ ​​ ​i​n−1​​,​i​n−2​​​​(R)​  ⊆ ⋯ ⊆ ​ ​​ ​i​2​​,​i​1​​​​(R)​  ⊆ ​ ​​ ​i​1​​,​(R)​​​(R)​  ⊆  ​(R)​.​
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Note that a priority allocation is agent-​i​-optimal for the agent ​i  ∈  N​ with ​π​(i)​  =  1​. 
Moreover, all agents in ​N​ are, by construction, indifferent between all allocations in 
the set ​​​​ ​i​n​​,​i​n−1​​​​(R)​​.

DEFINITION 3: A mechanism φ is a priority mechanism if there exists a priority 
ordering ​π​ such that for all profiles ​R  ∈ ​  ̃ ​​, the mechanism φ selects a ​π​-priority 
allocation from the set ​​(R)​​.

Since a priority mechanism always makes a selection from the set ​​(R)​​, it chooses 
an individually rational, maximal, and balanced allocation (which is efficient).

IV.  Results

As we show in Section V, it is impossible to construct an individually rational, 
efficient, and non-manipulable mechanism on the general domain ​​. Our first main 
result demonstrates that this impossibility can be avoided on the restricted domain 
​​ ̃ ​​  if exchanges are based on a priority mechanism.

THEOREM 1: Any priority mechanism with domain ​​ ̃ ​​ is non-manipulable.

In most settings, proving non-manipulability of a priority mechanism is rather 
straightforward; see, e.g., Svensson (1994). In our setting with multiple objects and 
potentially different number of objects, the scope for manipulation is much larger. 
The maximal set of allocations changes in a complex manner if one agent reports 
something slightly different. A key observation in establishing non-manipulability 
of the priority mechanism is that it is enough to ensure that no agent can ever gain by 
stating that she wants fewer units from an acceptable agent than she actually desires. 
This significantly reduces the possible scope of manipulations.

In order to show that no agent can ever gain by reducing the number of desired 
copies from an acceptable agent, we formulate a circulation flow network corre-
sponding to the allocation in the priority mechanism (see Appendix B for details). 
This enables us to keep track of changes from potential manipulations using the cir-
culation formulation. It is straightforward to see that the overall value in the associ-
ated optimization problem will decrease since the feasible set shrinks. It is, however, 
a nontrivial argument to show that also the agent who reduces her capacity will not 
increase the flow through her nodes. For details of the argument and the construction 
of the circulation flow network, see Appendix B.

In Proposition 1 below, it is demonstrated that a priority mechanism can be formu-
lated as a max-weight matching problem with vertex and edge capacities. Thereby 
we know that there exists an efficient way of computing the allocations chosen 
by the priority mechanism. The max-weight matching problem is a special case 
of the well-known network flow problem; thus, it is somewhat easier to describe 
than the circulation flow network formulation introduced in Appendix B. To for-
mulate the max-weight matching problem, a bipartite graph needs to be defined, 
with edge capacities and vertex quotas. The edge weights will be introduced  
later.
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DEFINITION 4: For any profile ​R  ∈ ​  ̃ ​​, the bipartite graph ​g  = ​ (N, M, E, u, q)​​ 
is defined by two disjoint sets of vertices, ​N​ and ​M​, a set of edges, ​E​, a profile 
of capacities ​u  = ​​ (u​(i, l)​)​​​(i,l)​∈E​​​ on each edge, and a profile of quotas on the 
vertices ​q  = ​​ (q​(i)​)​​

i∈V
​​​ . These are defined by

	 (i)	​ N  = ​ {1, … , n}​​,

	 (ii)	​ M  = ​ {n + 1, n + 2, … , n + n}​​,

	 (iii)	​ E  = ​ {​(i, n + j)​  ∈  N × M  :  j  ∈ ​ A​i​​​(​R​i​​)​ or j  =  i}​​,

	 (iv)	 for all ​i  ∈  N​ and each edge ​​(i, n + j)​  ∈  E​ where ​j  ∈ ​ A​i​​​(​R​i​​)​​, we set 
​u​(i, n + j)​  = ​​ t ̄ ​​ij​​​ and ​u​(i, n + i)​  = ​ t​i​​​, and

	 (v)	 for all ​i  ∈  N​, we set ​q​(i)​  = ​ t​i​​​.

Example 1: Let ​N = ​{1, 2, 3, 4}​​, ​​t​1​​ = ​t​2​​ = 1​, and ​​t​3​​ = ​t​4​​ = 2​. Let ​R ∈ ​ ̃ ​​  be  
such that ​​A​1​​​(​R​1​​)​ = ​A​2​​​(​R​2​​)​ = ​{3, 4}​​ (with ​​​t ̄ ​​13​​ = ​​t ̄ ​​14​​ = ​​t ̄ ​​23​​ = ​​t ̄ ​​24​​ = 1​) and ​​A​3​​​(​R​3​​)​  
= ​A​4​​​(​R​4​​)​ = ​ {1, 2}​​ (with ​​​t ̄ ​​31​​ = ​​t ̄ ​​32​​ = ​​t ̄ ​​41​​ = ​​t ̄ ​​42​​ = 2​). The constructed graph ​g​ is 
depicted in Figure 1.

The interpretation of the graph ​g​ is that the agents in ​M​ should be regarded 
as copies of the agents in ​N​, and in particular, agent ​n + i  ∈  M​ is the copy of 
agent ​i  ∈  N​. Furthermore, agents ​i  ∈  N​ and ​n + j  ∈  M​ are connected by an edge 
if and only if agent ​j​ is acceptable for agent ​i​ or if ​j  =  i​. A matching ​x​ specifies 
for each ​​(i, l)​  ∈  E​ a nonnegative integer ​​x​il​​  ∈ ​ ℕ​0​​​. Any matching ​x​ is equivalent 
to an allocation in the usual sense: ​​x​ii​​  = ​ x​i​(n+i)​​​​, ​​x​ij​​  = ​ x​i​(n+j)​​​​ for all ​j  ∈ ​ A​i​​​(​R​i​​)​​, 
and ​​x​ij​​  =  0​ for all ​j  ∈ ​ U​i​​​(​R​i​​)​​. Because an allocation will be defined by the match-
ing values ​​x​il​​​ on the edges, our construction guarantees that agent ​n + j  ∈  M​ can 
only provide goods to an agent ​i  ∈  N​ if agent ​i​ finds the good provided by agent ​j​ 
acceptable or if agent ​j​ is his own copy. Finally, the upper bound on the matching 
value from agent ​n + j​ to agent ​i​ where ​j  ∈ ​ A​i​​​(​R​i​​)​​ is equal to the upper bound that 
represents the number of goods agent ​i​ at most would like to receive from agent ​j​.

Recall that the balancedness conditions (1) and (2) must hold for any allocation. 
In the language of matching problems, this means that the required matching value 
is dictated by equations (1) and (2), which must be reformulated for the bipartite 
setting as follows:

(1′  )	 ​​  ∑ 
j∈​A​i​​​(​R​i​​)​∪​{i}​

​ 
 

 ​​​ x​i​(n+j)​​​  =  q​(i)​  for all i  ∈  N,​

(2′ )	 ​​  ∑ 
i∈​A​j​​​(​R​j​​)​∪​{i}​

​ 
 

 ​​​ x​j​(n+i)​​​  =  q​(i)​  for all i  ∈  N.​

These conditions are fulfilled by any matching because they express the perfectness 
condition in the matching instance.
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A natural interpretation of the bipartite graph is therefore that agents in ​M​ supply 
goods to the demanding agents in ​N​. To obtain a maximal outcome, it is important 
to prevent matchings between agents in ​N​ and their own copies in ​M​ whenever there 
are other feasible flows or, equivalently, to prevent agents from supplying goods to 
their own copies whenever it is feasible to supply goods to other distinct agents (by 
the balancedness conditions, any agent supplying goods to other agents also receives 
equally many goods in return from acceptable agents). This can be achieved by 
introducing an artificial weight whenever agents supply their own goods to them-
selves. Let, for this purpose, ​​w​il​​​ denote the weight associated when agent ​l  ∈  M​ 
supplies goods to agent ​i​, and let, in particular, for each ​​(i, l)​  ∈  E​

(4)	​​ w​il​​  = ​ {​
− 1

​ 
if l  =  n + i

​  
0
​ 

otherwise.
 ​​​

For a given profile ​R  ∈ ​  ̃ ​​ , a given graph ​g  = ​ (N, M, E, u, q)​​, and given 
weights ​w  = ​​ (​w​il​​)​​​(i,l)​∈E​​​, the (artificial) weight is maximized at any alloca-
tion ​x  ∈  ​ that solves the following maximization problem:

(5) 	 max ​​  ∑ 
(i;l)∈E

​ 
 

  ​​​​​w​il​​​ ​​x​il​​​  subject to

	 conditions (1′ ), (2′ ), ​​ x​il​​​ ∈ ​​ℕ​0​​​,  and ​​ x​il​​​  ≤  u(i, l) for all (i, l) ∈ E.

An allocation ​x  ∈  ​ is a maximizer if it is a solution of the maximization problem 
(5). Let ​​(R, w)​  ⊆  ​ denote the set of all maximizers at profile ​R  ∈ ​  ̃ ​​  for given 
weights ​w  = ​​ (​w​il​​)​​​(i,l)​∈E​​​. For notational convenience, the value of an allocation ​x​ at 
weight ​w​ is given by ​V​(x, w)​  = ​ ∑ ​(i,l)​∈E​ 

 
  ​​ ​w​il​​ ​x​il​​​.

LEMMA 1: If allocation ​x​ belongs to ​(R, w)​ at profile ​R  ∈ ​  ̃ ​​, then ​x  ∈  (R)​.

The set of maximizers ​​(R, w)​​ is nonempty for any profile ​R  ∈ ​  ̃ ​​ since 
​​(R, w)​  ⊆  ​(R)​​ and ​​(R)​​ is nonempty and finite for all ​R  ∈ ​  ̃ ​​. However, as  

3 421

5 6 7 8

Figure 1

Notes: Edge capacity 1 is color-coded by gray, while capacity 2 is denoted by black edges. The edges connecting 
two copies of the same agent are marked by dashed lines. The four vertices on the left have quota 1, while the four 
vertices on the right have quota 2.
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stated above, agents need not be indifferent between all allocations in the set 
​​(R, w)​​ since ​​(R, w)​  ⊆  ​(R)​​. Hence, in order to define a priority mechanism 
based on a solution to maximization problem (5), a refined selection from the set 
​​(R, w)​​ is necessary, which will be based on the priority ordering ​π​.

We will modify the weights ​w​ in order to take the priority ordering ​π​ into account. 
Let ​​ε​0​​  ∈ ​ (0, 1)​​ and ​​ε​i−1​​  = ​ (1 + ​t​i​​)​ ​ε​i​​​ for each ​i  ∈ ​ {1, … , n}​​. By construction 
of ​​ε​i​​​, it follows that11

(6)	 ​1  > ​ ε​0​​  ≥ ​ ε​i​​  > ​   ∑ 
k=i+1

​ 
n

  ​​​t​k​​ ​ε​k​​  >  0  for all i  ∈ ​ {0, …, n − 1}​.​

To guarantee a larger allocation to agents with higher priorities, the weight associ-
ated with an edge in the matching instance will be monotonically increasing with 
higher priorities. More specifically, let for each ​​(i, l)​  ∈  E​

	​​​ w ̃ ​​il​​  = ​ {​
−1

​ 
if l  =  n + i

​  ​ε​π​(i)​​​
​  otherwise. ​​​

The construction above means that the agent with the highest priority (i.e., the 
agent with ​π​(i)​  =  1​) will receive the highest edge weight (for edges ​​(i, l)​  ∈  
E\​{​(i, n + i)​}​​), the agent with the second-highest priority (i.e., the agent  
with ​π​(i)​  =  2​) will receive the second-highest edge weight, and so on.

Our second main result demonstrates that a mechanism that selects an allocation 
from the set of maximizers for each profile in ​​ ̃ ​​  and any given priority ordering is a 
priority mechanism. From Theorem 1, it is already known that such a mechanism is 
non-manipulable on the domain ​​ ̃ ​​ .

PROPOSITION 1: For a given priority ordering ​π​, a mechanism ​φ​ selecting for 
each profile ​R  ∈ ​  ̃ ​​ an allocation from ​​(R, ​w ̃ ​)​​ is a priority mechanism based on ​π​.

V.  Discussion and Extensions

This section discusses essentially single-valued cores and random mechanisms 
under two separate headings.12 The section  also contains a discussion of possi-
ble extensions of the model related to, e.g., more general preferences and trading 
networks.

A. Essentially Single-Valued Cores

Theorem 1 establishes that in the considered exchange problem, there exist 
mechanisms which are individually rational, efficient, and non-manipulable on 

11 To see this, note that ​​ε​n−1​​  =  ​(1 + ​t​n​​)​​ε​n​​  >  ​t​n​​ ​ε​n​​​ since ​​ε​n​​  >  0​ and, consequently, ​​ε​n−2​​  =  ​(1 + ​t​n−1​​)​​ε​n−1​​ 
=  ​ε​n−1​​ + ​t​n−1​​ ​ε​n−1​​  >  ​t​n​​ ​ε​n​​ + ​t​n−1​​ ​ε​n−1​​​. Condition (6) then follows by repeating these arguments.

12 We are grateful to the referees for bringing our attention to random mechanisms.
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the domain ​​ ̃ ​​ . This is surprising as a number of previous impossibility results for 
the combination of these axioms have been established by applying an essentially 
single-valued cores result by Sönmez (1999). Below, we connect his result to the 
considered exchange problem.

Given ​R  ∈ ​  ̃ ​​ , the core of ​R​, denoted by ​​(R)​​, consists of all feasible alloca-
tions ​x  ∈  ​ which are not dominated via some coalition and some allocation, mean-
ing that there exists no ​∅   ≠  S  ⊆  N​ and ​y  ∈  ​ such that (i) ​​y​i​​ ​R​i​​ ​x​i​​​ for all ​i  ∈  S​, 
(ii) ​​y​j​​ ​P​j​​ ​x​j​​​ for some ​j  ∈  S​, and (iii) ​​{j  ∈  N : ​y​ij​​  ≠  0}​  ⊆  S​ for all ​i  ∈  S​. The core 
of ​R​ is essentially single-valued if for all ​x, y  ∈  ​(R)​​, we have ​​x​i​​ ​I​i​​ ​y​i​​​ for all ​i  ∈  N​. 
Note that if ​​(R)​  =  ∅​, then the core of ​R​ is essentially single-valued.

Let ​​​ ̃ ​​​ 1​​ denote the set of all profiles ​R  ∈ ​  ̃ ​​ such that for all ​i  ∈  N​ and all 
​j  ∈ ​ A​i​​​(​R​i​​)​​, we have ​​​t ̄ ​​ij​​  =  1​ and ​​t​i​​  =  1​ (i.e., any agent demands at most one unit 
of any acceptable good, and any agent supplies at most one unit of their goods). 
This corresponds to the classical dichotomous domain by Bogomolnaia and Moulin 
(2004). Then it is easy to check that the domain ​​​ ̃ ​​​ 1​​ satisfies assumptions A and B 
of Sönmez (1999).13 Hence, his main result applies, which shows the following: 
if there exists an individually rational, efficient, and non-manipulable mechanism, 
then for any profile where the core is nonempty, we have (i) the core is essentially 
single-valued and (ii) the mechanism chooses a core allocation. However, here for 
any ​R  ∈ ​​  ̃ ​​​ 1​​, if the core of ​R​ is nonempty, then the set of individually rational 
and efficient allocations is essentially single-valued (and the core is essentially 
single-valued).14 But then any priority mechanism chooses a core allocation. Note 
that proposition 1 of Sönmez (1999) shows that when the core of each profile is exter-
nally stable, then any selection from the core correspondence is non-manipulable.15 
External stability implies that the core is nonempty for any profile, but here, if the 
core is nonempty, then the set of individually rational and efficient allocations is 
essentially single-valued. As this is often not the case, the core is often empty, and 
proposition 1 of Sönmez (1999) cannot be used to show the non-manipulability of 
priority mechanisms.

Once non-unitary endowments are allowed, the domain ​​ ̃ ​​  does not satisfy 
assumption B of Sönmez (1999). This is illustrated in the next example.

Example 2: We use the instance introduced in Example  1, i.e., 
​N  = ​ {1, 2, 3, 4}​​, ​​t​1​​  = ​ t​2​​  =  1​, ​​t​3​​  = ​ t​4​​  =  2​, and ​R  ∈ ​  ̃ ​​ is such that ​​A​1​​​(​R​1​​)​ 
= ​ A​2​​​(​R​2​​)​  = ​ {3, 4}​​ (with ​​​t ̄ ​​13​​  = ​​ t ̄ ​​14​​  = ​​ t ̄ ​​23​​  = ​​ t ̄ ​​24​​  =  1​) and ​​A​3​​​(​R​3​​)​  = ​ A​4​​​(​R​4​​)​ 
= ​ {1, 2}​​ (with ​​​t ̄ ​​31​​  = ​​ t ̄ ​​32​​  = ​​ t ̄ ​​41​​  = ​​ t ̄ ​​42​​  =  2​). If agent ​3​ comes before agent ​4​ in 
the priority-order ​π​, then ​​(3, 3, 12, 0)​​ is the unique ​π​-priority allocation (where this 

13 In our framework (without externalities), assumption A says that for any allocation ​x​, we have ​​x​i​​ ​I​i​​ ​ω​i​​​ if and 
only if ​​x​i​​  =  ​ω​i​​​, and assumption B says that whenever for two allocations ​x​ and ​y​ with ​​x​i​​ ​P​i​​ ​y​i​​​ and ​​x​i​​ ​R​i​​ ​ω​i​​​, there exists 
a preference relation ​​R​ i​ ′​​ such that ​​x​i​​ ​R​ i​ ′​ ​ω​i​​ ​R​ i​ ′​ ​y​i​​​.

14 Note that for any ​R  ∈  ​​ ̃ ​​​ 1​​, if the set of individually rational and efficient allocations is not essentially 
single-valued, then any two individually rational and efficient allocations, which are not regarded indifferent by 
all agents, dominate (via some coalition) each other, and the core must be empty: more formally, for ​R  ∈  ​ ̃  ​​ and 
any two individually rational and efficient allocations ​x​ and ​y​ for which not ​​x​i​​ ​I​i​​ ​y​i​​​ for all ​i  ∈  N​, for 
​S  =  ​{i  ∈  N  :  ​x​ii​​  =  0}​​ we have for all ​i  ∈  S​, ​​x​i​​ ​R​i​​ ​y​i​​​, and for some ​j  ∈  S​, ​​x​j​​ ​P​j​​ ​y​j​​​, i.e., ​x​ dominates ​y​ with the 
coalition ​S​ (and the same argument applies for ​y​ in the role of ​x​ and ​x​ in the role of ​y​). Thus, the core of ​R​ is empty.

15 See also Demange (1987) for an important study of non-manipulable cores.
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stands for agent 1 receiving one unit from agent 3, agent 2 receiving one unit from 
agent 3, agent 3 receiving one unit from both agent 1 and agent 2, and agent ​4​ keep-
ing his endowment). If agent ​4​ comes before agent ​3​ in the priority-order ​π​, then ​​

(4, 4, 0, 12)​​ is the unique ​π​-priority allocation. Note that ​​(3, 3, 12, 0)​ ​P​3​​​(3, 4, 1, 2)​​P​3​​ ​ω​3​​​  
but there exists no ​​R​ 3​ ′ ​  ∈ ​​  ̃ ​​3​​​ such that ​​(3, 3, 12, 0)​ ​P​ 3​ ′ ​ ​ω​3​​ ​P​ 3​ ′ ​​(3, 4, 1, 2)​​. The latter con-
clusion follows since ​​(3, 3, 12, 0)​​P​ 3​ ′ ​ ​ω​3​​​ implies ​1  ∈ ​ A​3​​​(​R​ 3​ ′ ​)​​ and ​​​t ̄ ​​ 31​ ′  ​  ≥  1​, and thus ​​

(3, 4, 1, 2)​ ​P​ 3​ ′ ​ ​ω​3​​​. Hence, assumption B is violated for the domain ​​ ̃ ​​, and, at the same 
time, any priority mechanism is individually rational, efficient, and non-manipulable.

The example above also shows that in general, we do not have dichotomous pref-
erences in the domain ​​ ̃ ​​ . We may have many distinct indifference classes for prefer-
ences in the domain ​​ ̃ ​​ , and yet, by Theorem 1, there exists an individually rational, 
efficient, and non-manipulable mechanism.

Finally, it is demonstrated that a priority mechanism with the same order may 
select different allocations when choosing from the set of individually rational and 
efficient allocations (as in Manjunath and Westkamp 2019).

Example 3: Let ​N  = ​ {1, 2, 3, 4}​​ and ​​t​1​​  = ​ t​2​​  = ​ t​3​​  = ​ t​4​​  =  1​. Let ​R  ∈ ​  ̃ ​​  be 
such that ​​A​1​​​(​R​1​​)​  = ​ {2}​​, ​​A​2​​​(​R​2​​)​  = ​ {3}​​, ​​A​3​​​(​R​3​​)​  = ​ {1, 4}​​, and ​​A​4​​​(​R​4​​)​  = ​ {3}​​ 
(with ​​​t ̄ ​​12​​  = ​​ t ̄ ​​23​​  = ​​ t ̄ ​​31​​  = ​​ t ̄ ​​34​​  = ​​ t ̄ ​​43​​  =  1​). Then ​​(R)​  = ​ {(2, 3, 1, 0)}​​, i.e., there 
is a unique individually rational and maximal allocation which is chosen by any 
priority mechanism. However, the allocation ​​(0, 0, 4, 3)​​ is individually rational 
and efficient, which is selected by any priority mechanism which chooses from the 
whole set of individually rational and efficient allocations and where agent 4 occu-
pies the first position in the priority order (and such a priority mechanism would not 
necessarily result in a maximal allocation). Note that the same argument applies if a 
priority mechanism chooses from the set of all feasible allocations.

B. Random Mechanisms

Priority mechanisms are unfair in the sense that the agent in the first position of 
the priority ordering receives, for any profile ​R​, his most preferred bundle among 
all allocations in ​​(R)​​ (but this is not the case for the agent in last position of the 
priority ordering). To establish fairness, one may consider random allocations and 
random mechanisms, which we define briefly below.

A random allocation for ​R​ is a probability distribution ​p​ over ​​. 
For all ​x ∈ ​, let ​p​(x)​​ denote the probability of allocation ​x​. The support of ​p​ 
is given by the allocations which are chosen with positive probability by ​p​, i.e., 
​supp​(p)​  = ​ {x  ∈    :  p​(x)​  >  0}​​. Then ​p​ is ex post individually rational for ​R​ 
if for all ​x ∈ supp​(p)​​, ​x​ is individually rational. Analogously, ex post maximal-
ity and ex post efficiency are defined. For two random allocations ​p​ and ​q​, we say 
that ​p​ stochastically ​​R​i​​​-dominates ​q​ (where we write equivalently ​​p​i​​​ stochastically 
​​R​i​​​-dominates ​​q​i​​​), denoted by ​​p​i​​ ​R​ i​ 

sd​ ​q​i​​​, if for all ​y  ∈  ​ we have

	​​   ∑ 
x∈:​x​i​​​R​i​​​y​i​​

​ 
 

 ​​ p​(x)​  ≥ ​   ∑ 
x∈:​x​i​​​R​i​​​y​i​​

​ 
 

 ​​ q​(x)​.​
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Then ​​p​i​​ ​P​ i​ 
sd​ ​q​i​​​ if ​​p​i​​ ​R​ i​ 

sd​ ​q​i​​​ and not ​​q​i​​ ​R​ i​ 
sd​ ​p​i​​​. A random mechanism ​ϕ​ chooses for any 

profile ​R  ∈ ​  ̃ ​​ a random allocation for ​R​. The random mechanism ​ϕ​ is ex post indi-
vidually rational if, for any profile ​R​, the random allocation is ex post individually 
rational for ​R​. Analogously, ex post maximality and ex post efficiency are defined 
for random mechanisms.

Let now ​​φ​​ π​​ denote a deterministic priority mechanism using ​π​ as a priority order-
ing and ​Π​ denote the set of all priority orderings. Then let ​RP = ​∑ π∈Π​ 

 
 ​​​ (1/n !)​​φ​​ π​​ 

denote the random priority mechanism putting equal priority on each priority order-
ing. Because deterministic priority mechanisms are individually rational, maximal, 
and efficient, the random priority mechanism is ex post individually rational, ex post 
maximal, and ex post efficient.

For random mechanisms, axioms are often defined in terms of stochastic dom-
inance. The random mechanism ​ϕ​ is sd-non-manipulable if, for all ​R, ​R ′ ​ ∈ ​ ̃ ​​  such 
that ​​R ′ ​  = ​ (​R​ i​ ′​, ​R​−i​​)​​ for some ​i  ∈  N​, we have ​​ϕ​i​​​(R)​ ​R​ i​ 

sd​ ​ϕ​i​​​(​R ′ ​)​​. The random mech-
anism ​ϕ​ is sd-efficient if, for all ​R  ∈ ​  ̃ ​​ , there exists no random allocation ​p​ for ​R​ 
such that ​​p​i​​ ​R​ i​ 

sd​ ​ϕ​i​​​(R)​​ for all ​i  ∈  N​ and ​​p​j​​ ​P​ i​ 
sd​ ​ϕ​j​​​(R)​​ for some ​j  ∈  N​.

For a random allocation ​p​ and agent ​j​, let ​​​[​p​j​​]​​​ −jj​​ denote the probabilities which  
​​p​j​​​ induces on any ​​x​jl​​  ∈ ​ ℕ​0​​​ with ​j  ≠  l​. Here ​​​[​p​j​​]​​​ −jj​​ ignores the probabilities  
on the number of units which agent ​j​ keeps from his endowment. Because agents 
have different numbers of endowments, this is necessary when comparing ran-
dom allocations across different agents (in terms of individual preferences). The 
notion below only compares ex post individually rational random allocations. The 
ex post individually rational random mechanism ​ϕ​ is sd-fair if for all ​R  ∈ ​  ̃ ​​  and all 
​i, j  ∈  N​, ​​ϕ​i​​​(R)​ ​R​ i​ 

sd​ ​​[​ϕ​j​​​(R)​]​​​ −jj​​.
Now, from our results we obtain the following corollary.

COROLLARY 1: The random priority mechanism is sd-non-manipulable, 
sd-efficient, and sd-fair.

In Corollary 1, sd-non-manipulability and sd-fairness are quite obvious, whereas 
sd-efficiency is more surprising and relies on the fact that preferences are dichoto-
mous over single agents (see also Bogomolnaia and Moulin 2004).16 Besides ran-
dom priority mechanisms, it would be interesting whether there are any other “nice” 
random mechanisms which are not simply a mixing of deterministic mechanisms. 
This question is left for future research.

C. Extensions

This section discusses three possible extensions of the considered model.17

More General Preferences.—One may argue that the upper bounds on how many 
units of the good agent ​i​ at most would like to receive from agent ​j​ are extreme 

16 This is not true in general. Bogomolnaia and Moulin (2001) show that ex post efficiency (or ex post maximal-
ity) on the strict domain does not imply sd-efficiency when agents have unitary endowments.

17 We thank the referees for suggesting these extensions.
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in the following sense. Suppose that there are two agents, called 1 and 2, such 
that ​​t​1​​  = ​ t​2​​  =  3​. Now, if for profile ​R​ we have ​​​t ̄ ​​12​​  =  2​, then ​​(22, 11)​ ​P​1​​ ​w​1​​ ​P​1​​​

(222, 111)​​, meaning that agent 1 would strictly prefer his endowment to receiving 
three units of the good from agent 2. One may argue that agent 1 has a preference such 
that ​​(22, 11)​ ​P​1​​​(222, 111)​ ​P​1​​ ​w​1​​​, i.e., receiving two units of the good from agent 2 is 
optimal, but receiving three units is still better than his endowment. This would corre-
spond to agent 1 having a “peak” at two units and a maximum at three units.

It is easy to see that including such preferences would result in a manipulable 
mechanism (if the mechanism is efficient and individually rational). Suppose, for 
instance, that agent 2 has the following preference: ​​(222, 111)​ ​P​2​​​(22, 11)​ ​P​2​​ ​w​2​​​. 
Then ​x = ​(222, 111)​​ and ​​x ′ ​ = ​(22, 11)​​ are the two individual rational and efficient 
allocations at the preference profile ​​(​P​1​​, ​P​2​​)​​. Thus, any mechanism that chooses 
an individual rational and efficient allocation must choose either ​x​ or ​​x ′ ​​. Suppose 
now that allocation ​x​ is chosen. Then agent 1 can report ​​P​ 1​ ′ ​​ as ​​(22, 11)​ ​P​ 1​ ′ ​ ​w​1​​ ​P​ 1​ ′ ​​
(222, 111)​​, and the mechanism must choose allocation ​​x ′ ​​ since this is the only indi-
vidual rational and efficient allocation at ​​(​P​ 1​ ′ ​, ​P​2​​)​​. This is a successful manipulation 
by agent 1. A symmetric argument, where agent 2 can manipulate, can be made if 
allocation ​​x ′ ​​ is chosen. This impossibility is not surprising; see, for instance Konishi, 
Quint, and Wako (2001), where agents are endowed with multiple types of indivis-
ible goods and have more general preferences.

Another possibility is that agents possess more general preferences but are 
only allowed to report profiles belonging to ​​ ̃ ​​  to the priority mechanism. Then 
non-manipulability becomes meaningless as agents cannot report their true prefer-
ences, and one would have to consider games induced by the mechanism and the 
general preferences. For instance, if all agents report that no goods are acceptable, 
then this is a Nash equilibrium outcome which is in general neither efficient nor 
maximal for the true preferences.

Noninteger Endowments and Upper Bounds.—Our analysis can easily accommo-
date endowments and upper bounds given by rational numbers. Without going into 
detail, for any profile ​R​ (where for any ​i  ∈  N​, ​​t​i​​​ and ​​​t ̄ ​​ij​​​ are rational numbers), let ​d​ 
denote the greatest common denominator of all constraints. Then, for the profile ​R​ in 
terms of unit ​d​, agent ​i​ is endowed with ​d​t​i​​​ units of his own good, and ​d ​​t ̄ ​​ij​​​ represents 
agent ​i​’s upper bound for goods from agent ​j​. Our construction applies to the pro-
file ​R​ in terms of unit ​d​ to obtain a priority allocation which is individually rational 
and maximal. For non-manipulability, for two profiles ​R​ and ​​R ′ ​​, let ​R​ be in terms 
of unit ​d​ and ​​R ′ ​​ in terms of unit ​​d ′ ​​. However, we can then express ​R​ in terms of unit 
​d​d ′ ​​, and the priority allocation for ​R​ in terms of unit ​d​ is also a priority allocation in 
terms of unit ​d​d ′ ​​. Similarly, we can express ​​R ′ ​​ in terms of unit ​d​d ′ ​​, and the priority 
allocation for ​​R ′ ​​ is also a priority allocation in terms of unit ​d​d ′ ​​. Because the same 
priority ordering is used, nonmanipulability follows from Theorem 1. Moreover, the 
algorithm computing a maximum weight circulation is strongly polynomial (Orlin 
1993); thus, the running time does not depend on ​d​ or ​​d ′ ​​.18

18 We leave the incorporation of irrational constraints for future research.
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Embedding in Trading Networks.—It is next demonstrated that our model can be 
embedded in the general framework of trading networks by Kominers et al. (2020).

In any allocation ​x​, for any ​i, j  ∈  N​, the number ​​x​ij​​​ can be viewed as a contract 
between agent ​i​ and agent ​j​, where agent ​j​ provides ​​x​ij​​​ units of his own good to agent ​i​. 
For later purposes, the number ​​x​ij​​​ is decomposed into separate units ​​1​ij​​, ​2​ij​​, … , ​x​ij​​​ 
where ​​k​ij​​​ stands for the ​k​th unit of the good provided by agent ​j​ to agent ​i​. Then 
agent ​i​ is the buyer in contract ​​k​ij​​​, and agent ​j​ is the seller in contract ​​k​ij​​​. We write 
​i  =  b​(​k​ij​​)​​ and ​j  =  s​(​k​ij​​)​​. Prices are ignored and are all implicitly set to one. The 
set of all contracts is denoted by

	​   = ​ {​k​ij​​  :  i, j  ∈  N with i  ≠  j and k  ∈ ​ {1, … , ​t​j​​}​}​.​

An allocation is then simply a subset of contracts ​Y ⊆ ​. Let ​​Y​→i​​ = ​{y ∈ Y  :  b​(y)​  
=  i}​​ denote the set of contracts in ​Y​ where agent ​i​ is a buyer and  
​​Y​i→​​  = ​ {y  ∈  Y  :  s​(y)​  =  i}​​ the set of contracts in ​Y​ where agent ​i​ is a seller. 
Let ​​Y​ij​​  = ​ Y​→i​​  ∩ ​ Y​j→​​​ denote the set of contracts in ​Y​ where agent ​i​ is the buyer and 
agent ​j​ is the seller. Let ​​Y​i​​  = ​ Y​→i​​  ∪ ​ Y​i→​​​. A set of contracts ​Y​ is feasible if

	 (i)	 for all ​i  ∈  N​, ​|​Y​→i​​|  =  |​Y​i→​​|  ≤ ​ t​i​​​,

	 (ii)	 for all ​i, j  ∈  N​, if ​​k​ij​​  ∈  Y​ and ​k  >  1​, then ​​​(k − 1)​​ij​​  ∈  Y​, and

	 (iii)	 for all ​i, j  ∈  N​, if ​​k​ji​​  ∈  Y​ and ​k  >  1​, then ​​​(k − 1)​​ji​​  ∈  Y​.

Note that condition (i) corresponds to equations (1) and (2), and condition (ii) says 
that if agent ​j​ provides to agent ​i​ the ​k​th unit of the good, then agent ​j​ provides to 
agent ​i​ the ​(k − 1)​th unit of the good (and similarly for condition (iii)). We say 
that ​​Y​i​​​ is feasible for agent ​i​ if (i), (ii), and (iii) hold for agent ​i​. Note that any fea-
sible allocation ​Y​ corresponds to an allocation ​y​ in the original model by setting for 
all ​i, j  ∈  N​ with ​i  ≠  j​, ​​y​ij​​  =  |​Y​ij​​|​, and ​​y​ii​​  = ​ t​i​​ − |​Y​i→​​|​ (and vice versa as above).

Given profile ​R  ∈ ​  ̃ ​​, agent ​i​’s utility function over subsets of contracts ​Y  ⊆ ​ ​i​​​ 
which are feasible for agent ​i​ is given by (i) ​​U​i​​​(Y)​  =  |​Y​i→​​|​ if ​​Y​ij​​  =  ∅​ for all ​j  ∈  
​U​i​​​(​R​i​​)​​ and ​|​Y​ij​​|  ≤ ​​ t ̄ ​​ij​​​ for all ​j  ∈  A​(​R​i​​)​​ and (ii) ​​U​i​​​(Y)​  =  − ∞​ otherwise. Then an 
allocation ​Y​ is feasible if for all ​i  ∈  N​, ​​U​i​​​(Y)​  ≠  − ∞​. Note that ​​U​i​​​(∅)​  =  0​.

Then agent ​i​’s choice correspondence for subsets of contracts is defined as fol-
lows. For all ​Y  ⊆ ​ ​i​​​, let

​​C​i​​​(Y)​ = ​{X ⊆ Y  :  X is feasible for i and  ​U​i​​​(X)​ ≥ ​U​i​​​(​X ′ ​)​ for all ​X ′ ​ ⊆ Y feasible for i}​.​

We then write for ​Y  ⊆  ​, ​​C​i​​​(Y)​  = ​ C​i​​​(​Y​i​​)​​.
Then allocation ​Y​ is individually rational if for all ​i  ∈  N​, ​​Y​i​​  ∈ ​ C​i​​​(Y)​​. The allo-

cation ​Y​ is maximal if ​Y​ is individually rational and there exists no other individually 
rational allocation ​W​ such that ​​∑ i∈N​ 

 
 ​​ ​ U​i​​​(W)​  > ​ ∑ i∈N​ 

 
 ​​​ U​i​​​(Y)​​. Then allocation ​Y​ is 

stable if ​Y​ is individually rational and there exists no ​Z  ⊆   \Y​ such that for all ​i  ∈  
N​(Z)​  = ​ {i  ∈  N  :  ​Z​i​​  ≠  ∅}​​ and all ​W  ∈ ​ C​i​​​(Y ∪ Z)​​, ​​Z​i​​  ⊆ ​ W​i​​​.
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COROLLARY 2: If ​Y​ is individually rational and maximal, then ​Y​ is stable.

Thus, our results establish that there exists a stable and non-manipulable 
mechanism. Again, this is surprising as there often does not exist any stable and 
non-manipulable mechanism.

Below, we verify that agents’ preferences satisfy monotone substitutability. 
Hence, by theorem 1 of Kominers et al. (2020), stability is equivalent to “chain sta-
bility.” Moreover, one may verify in Example 3 that ​​(0, 0, 4, 3)​​ is stable, and the set 
of individually rational and maximal allocations is in general a strict subset of the 
set of stable allocations.

Then agent ​i​’s choice function is monotone substitutable if (1) for 
all ​Y, Z  ⊆ ​ ​i​​​ such that ​​Y​i→​​  = ​ Z​i→​​​ and ​​Y​→i​​  ⊆ ​ Z​→i​​​, for every ​​Y​​ ⁎​  ∈ ​ C​i​​​(Y)​​ there 
exists ​​Z​​ ⁎​  ∈ ​ C​i​​​(Z)​​ such that (i) ​​Y​ i→​ ⁎  ​  ⊆ ​ Z​ i→​ ⁎  ​​, (ii) ​​(​Y​→i​​\​Y​ →i​ 

⁎  ​)​  ⊆ ​ (​Z​→i​​\​Z​ →i​ 
∗  ​)​​, and 

(iii) ​|​Z​ →i​ 
∗  ​| − |​Z​ i→​ ∗  ​| ≥ |​Y​ →i​ 

⁎  ​| − |​Y​ i→​ ⁎  ​|​; and (2) for all ​Y, Z ⊆ ​​i​​​ such that ​​Y​→i​​ = ​Z​→i​​​ 
and ​​Y​i→​​ ⊆ ​Z​i→​​​, for every ​​Y​​ ⁎​ ∈ ​C​i​​​(Y)​​ there exists ​​Z​​ ∗​ ∈ ​C​i​​​(Z)​​ such that (i) ​​Y​ →i​ 

⁎  ​ ⊆ ​Z​ →i​ 
⁎  ​​, 

(ii) ​​(​Y​i→​​\​Y​ i→​ ⁎  ​)​  ⊆ ​ (​Z​i→​​\​Z​ i→​ ∗  ​)​​, and (iii) ​|​Z​ i→​ ⁎  ​| − |​Z​ →i​ 
∗  ​|  ≥  |​Y​ i→​ ∗  ​| − |​Y​ →i​ 

∗  ​|​.

LEMMA 2: For all ​i  ∈  N​ and all ​R  ∈ ​  ̃ ​​, agent ​i​’s choice function ​​C​i​​​ is monotone 
substitutable.

VI.  Concluding Remarks

This paper has modeled time exchanges as matching markets. On a restricted, 
yet natural preference domain, it has been demonstrated that a priority mechanism 
can be formulated as a max-weight matching problem and, furthermore, that such a 
mechanism is non-manipulable and always makes a selection from the set of indi-
vidually rational, efficient, and balanced allocations. No mechanism with these 
properties exists in the general preference domain (Sönmez 1999, corollary 1).

Even if the considered priority mechanism has been demonstrated to satisfy all 
properties of interest on a restricted preference domain, the mechanism can be crit-
icized from a fairness perspective as it discriminates low-priority agents (see the 
discussion in Section VB). For this reason, it is important to characterize the entire 
class of mechanisms that satisfies the axioms of interest to see if such discrimination 
can be avoided or not. Moreover, even though the considered domain restriction is 
natural for many time exchanges, it may also be of importance to find a maximal 
domain result where the abovementioned impossibility can be escaped. Both these 
open problems are left for future research.

Finally, we would again like to point out that even if the timebanking problem 
was introduced in Section I, all results stated in this paper can be adopted on other 
types of time exchanges. Consequently, the proposed mechanism is not restricted to 
the timebanking application (see also the introduction for additional examples).19

19 Another problem that recently has been solved, using a version of the priority mechanism proposed in 
this paper, is the “seminar exchange problem.” This problem was initiated in Scandinavia in the fall of 2018 
(by one of the authors of this paper) to help final year PhD students to practice their job market talks at external 
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Appendix A: Proofs

Appendix  A contains the proofs of all results except Theorem  1, which is in 
Appendix B.

PROOF OF LEMMA 1:
Suppose that allocation ​x​ belongs to ​​(R, w)​​. The fact that ​x​ is feasible and individ-

ually rational follows directly from the construction of the graph ​g  = ​ (N, M, E, u, q)​​ 
and by definition of the maximization problem (5), i.e., agent ​n + j  ∈  M​ is only 
connected to an agent ​i  ∈  N​ if agent ​j  ∈ ​ A​i​​​(​R​i​​)​ ∪ ​{i}​​, nonzero matching values 
are between connected agents, and the matching value never exceeds the upper 
bounds ​​​t ̄ ​​ij​​​ on any edge ​​(i, n + j)​  ∈  E​.

To show that allocation ​x​ is maximal, it will be demonstrated that ​x​ minimizes the 
total matching value between agents ​i  ∈  N​ and their respective clones ​i + n  ∈  M​. 
Because ​x  ∈  ​(R, w)​​ is a maximizer, it follows that

(7)	 ​​  ∑ 
​(i,l)​∈E

​ 
 

 ​​​ w​il​​ ​x​il​​  ≥ ​   ∑ 
​(i,l)​∈E

​ 
 

 ​​​ w​il​​ ​x​ il​ ′ ​  for any feasible allocation ​x ′ ​ in program (5).​

Given the construction of the costs in condition (4), it now follows from condition 
(7) that

	​​  ∑ 
i=1

​ 
n

  ​​​w​i​(n+i)​​​ ​x​i​(n+i)​​​  ≥ ​  ∑ 
i=1

​ 
n

  ​​​w​i​(n+i)​​​ ​x​ i​(n+i)​​ ′  ​.​

Because ​​w​i​(i+n)​​​  =  − 1​ for all ​i  ∈  N​, by condition (4), the inequality above can be 
rewritten as

	​​  ∑ 
i=1

​ 
n

  ​​ ​x​ i​(n+i)​​ ′  ​  ≥ ​  ∑ 
i=1

​ 
n

  ​​​ x​i​(n+i)​​​.​

But this condition means that allocation ​x​ minimizes the total matching value 
between agents ​i  ∈  N​ and their respective clones ​i + n  ∈  M​ among all feasible 
allocations, which is the desired conclusion. ∎

PROOF OF PROPOSITION 1:
It is first demonstrated that ​​(R, ​w ̃ ​)​  ⊆  ​(R, w)​​ for each profile ​R  ∈ ​  ̃ ​​ . 

Suppose now that ​x  ∈  ​(R, w)​​ but ​​x ′ ​  ∉  ​(R, w)​​ for some ​​x ′ ​​ that is feasible in the 

departments. To solve this problem, economics departments classified 11 different research fields as accept-
able and unacceptable. Job market candidates, on the other hand, classified themselves by 1 of the 11 different 
research fields and all departments as either acceptable or unacceptable. A specific construction guaranteed 
that the job market candidates also played the role of their departments and could, therefore, be engaged in 
time-balanced seminar exchanges with other students. The specific construction made it possible to apply our 
model and mechanism in this setting; due to limited space, we will not explain further details but are happy 
to answer any questions and provide further details via e-mail. In total, 10 departments and 21 job market 
candidates from Denmark, Norway, and Sweden participated in the centralized market for seminar exchange. 
In the end, all candidates were matched to some department in a balanced sense (i.e., each department orga-
nized exactly as many seminars as their own students were invited to). All details of the seminar exchange 
market are described at the Swedish Economics blog Ekonomistas. See https://ekonomistas.se/2018/12/03/
en-skandinavisk-matchningsmarknad-for-doktorandseminarier/.

https://ekonomistas.se/2018/12/03/en-skandinavisk-matchningsmarknad-for-doktorandseminarier/
https://ekonomistas.se/2018/12/03/en-skandinavisk-matchningsmarknad-for-doktorandseminarier/
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optimization program defined in (5). To reach the conclusion, it is sufficient to show 
​​x ′ ​  ∉  ​(R, ​w ̃ ​)​​.

Note that ​x  ∈  ​(R, w)​​ and ​​x ′ ​  ∉  ​(R, w)​​ imply ​V​(x, w)​  >  V​(​x ′ ​, w)​​. This con-
clusion together with ​​w​il​​  ∈ ​ {− 1, 0}​​ and ​​x​il​​  ∈ ​ ℕ​0​​​ for all ​​(i, l)​  ∈  E​ and ​​ε​0​​  <  1​ 
gives ​V​(x, w)​  >  V​(​x ′ ​, w)​ + ​ε​0​​​. Because ​​​w ̃ ​​il​​  ≥ ​ w​il​​​ for all ​​(i, l)​  ∈  E​ by construc-
tion, it holds that ​V​(x, ​w ̃ ​)​  ≥  V​(x, w)​​. This, together with the inequalities above, 
implies ​V​(x, ​w ̃ ​)​  >  V​(​x ′ ​, w)​ + ​ε​0​​​. To complete this part of the proof, we show that 
​V​(​x ′ ​, w)​ + ​ε​0​​  ≥  V​(​x ′ ​, ​w ̃ ​)​​ since this condition together with the above conclusions 
then shows ​V​(x, ​w ̃ ​)​  >  V​(​x ′ ​, ​w ̃ ​)​​, i.e., that ​​x ′ ​  ∉  ​(R, ​w ̃ ​)​​.

To demonstrate ​V​(​x ′ ​, w)​ + ​ε​0​​  ≥  V​(​x ′ ​, ​w ̃ ​)​​, we partition ​E​ into two disjoint sets, ​​E​​ 1​​ 
and ​​E​​ 2​​, where the former set contains all edges ​​(i, l)​​ in ​E​ where ​l ≠ i + n​, and the latter 
contains all edges ​​(i, l)​​ in ​E​ where ​l  =  i + n​. Consequently, ​​w​il​​  =  0  < ​​ w ̃ ​​il​​  = ​ ε​i​​​ 
for all ​​(i, l)​  ∈ ​ E​​ 1​​, and ​​w​il​​  = ​​ w ̃ ​​il​​  =  − 1​ for all ​​(i, l)​  ∈ ​ E​​ 2​​. Hence, the inequality 
​V​(​x ′ ​, w)​ + ​ε​0​​  ≥  V​(​x ′ ​, ​w ̃ ​)​​ can be rewritten as

      ​      V​(​x ′ ​, w)​ + ​ε​0​​  = ​   ∑ 
​(i,l)​∈E

​​​​w​il​​ ​x​ il​ ′ ​ + ​ε​0​​ 

	 = ​   ∑ 
​(i,l)​∈​E​​ 1​

​​​ ​w​il​​ ​x​ il​ ′ ​ + ​  ∑ 
​(i,l)​∈​E​​ 2​

​​​ ​w​il​​ ​x​ il​ ′ ​ + ​ε​0​​ 

	 = ​   ∑ 
​(i,l)​∈​E​​ 2​

​​​ ​​w ̃ ​​il​​ ​x​ il​ ′ ​ + ​ε​0​​ 

	 ≥ ​   ∑ 
​(i,l)​∈E

​​​ ​​w ̃ ​​il​​ ​x​ il​ ′ ​ 

	 = ​   ∑ 
​(i,l)​∈​E​​ 1​

​​​ ​​w ̃ ​​il​​ ​x​ il​ ′ ​ + ​  ∑ 
​(i,l)​∈​E​​ 2​

​​​ ​​w ̃ ​​il​​ ​x​ il​ ′ ​ 

	 = ​   ∑ 
​(i,l)​∈​E​​ 1​

​​​ ​ε​i​​ ​x​ il​ ′ ​ + ​  ∑ 
​(i,l)​∈​E​​ 2​

​​​ ​​w ̃ ​​il​​ ​x​ il​ ′ ​ 

	 =  V​(​x ′ ​, ​w ̃ ​)​​,

or, equivalently, as

(8)	​​ ε​0​​  ≥ ​   ∑ 
​(i,l)​∈​E​​ 1​

​ 
 

 ​​​ ε​i​​ ​x​ il​ ′ ​.​

Conditions (6) and (1′ ) together with the fact that ​​ε​i​​ ​x​il​​  ≥  0​ for all ​​(i, l)​  ∈  N × M​ 
now give

	​​ ε​0​​  > ​  ∑ 
i∈N

​ 
 

 ​​ ​ ε​i​​ ​t​i​​  ≥ ​   ∑ 
​(i,l)​∈​E​​ 1​

​ 
 

 ​​​ ε​i​​ ​x​ il​ ′ ​.​
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But then condition (8) must hold. Hence, ​​(R, ​w ̃ ​)​  ⊆  ​(R, w)​​. Thus, by Lemma 1, 
​φ​(R)​  ∈  ​(R)​​.

To conclude the proof, it needs only to be demonstrated that φ is a priority mech-
anism. But this follows directly from the construction of the weights ​​ε​i​​​. To see this, 
recall from condition (6) that ​​ε​i​​  > ​ ∑ k=i+1​ 

n  ​​ ​t​k​​ ​ε​k​​​ for all ​i  ∈ ​ {1, … , n − 1}​​. Hence, 
assigning one additional unit to agent ​i​ in maximization problem (5) is strictly pre-
ferred to assigning ​​t​j​​​ units to each agent ​j  ∈  N​ with ​π​(i)​  <  π​(j)​​. Thus, ​​(R, ​w ̃ ​)​​ 
is a selection from ​​(R, w)​  ⊆  ​(R)​​ that first maximizes the number of goods that 
agent ​​i​1​​  ∈  N​ with ​π​(​i​1​​)​  =  1​ receives from acceptable agents (i.e., a selection from 
the set ​​​​ ​i​1​​,​(R,w)​​​(R)​​), and then maximizes the number of goods that agent ​​i​2​​  ∈  N​ 
with ​π​(​i​1​​)​  =  2​ receives from acceptable agents (i.e., a selection from the set 
​​​​ ​i​2​​,​i​1​​​​(R)​​), and so on. This is the definition of a priority mechanism. ∎

PROOF OF COROLLARY 1:
Because any deterministic priority mechanism ​​φ​​ π​​ is non-manipulable, for all 

​R, ​R ′ ​  ∈ ​  ̃ ​​  such that ​​R ′ ​  = ​ (​R​ i​ ′​, ​R​−i​​)​​ for some ​i  ∈  N​, we have ​​φ​ i​ 
π​​(R)​ ​R​i​​ ​φ​ i​ 

π​​(​R ′ ​)​​. But 
then the random priority mechanism is sd-non-manipulable.

Let ​ϕ  =  RP​. For sd-efficiency, note that ​ϕ​(R)​​ is ex post maximal, and, for 
all ​x, y  ∈  supp​(ϕ​(R)​)​​, we have

	​​  ∑ 
i∈N

​ 
 

 ​​ ​   ∑ 
j∈​A​i​​​(​R​i​​)​

​ 
 

 ​​​ x​ij​​  = ​  ∑ 
i∈N

​ 
 

 ​​  ​   ∑ 
j∈​A​i​​​(​R​i​​)​

​ 
 

 ​​​ y​ij​​  ≡  m.​

Now, if for some random allocation ​p​ for ​R​ we have ​​p​i​​ ​R​ i​ 
sd​ ​ϕ​i​​​(R)​​ for all ​i  ∈  N​ 

and ​​p​j​​ ​P​ i​ 
sd​ ​ϕ​j​​​(R)​​ for some ​j  ∈  N​, then ​p​ is ex post individually rational. But then it 

follows that (with setting the utility of ​i​ from ​x​ equal to ​​∑ j∈​A​i​​​(​R​i​​)​​ 
 
 ​​ ​ x​ij​​​)

	​​  ∑ 
i∈N

​ 
 

 ​​  ​   ∑ 
x∈supp​(p)​

​ 
 

 ​​ p​(x)​​  ∑ 
j∈​A​i​​​(​R​i​​)​

​ 
 

 ​​​ x​ij​​  >  m.​

But then there must exist ​y  ∈  supp​(p)​​ such that ​​∑ i∈N​ 
 
 ​​ ​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​ ​ y​ij​​  >  m​, which is a 

contradiction to ex post maximality of ​ϕ​(R)​​. Thus, ​ϕ​ is sd-efficient.
For sd-fairness, note that for any ​i, j  ∈  N​, the probability that ​i​ occupies the first 

position in a priority ordering is equal to the probability that ​j​ occupies the first 
position in a priority ordering. Similarly, for any ​l  ∈  N\​{i, j}​​, the probability that ​i​ 
occupies the second position after ​l​ in a priority ordering is equal to the probability 
that ​j​ occupies the second position after ​l​ in a priority ordering, and so on. But then 
it follows that the random priority mechanism is sd-fair. ∎

PROOF OF COROLLARY 2:
Suppose that ​Y​ is not stable. As ​Y​ is individually rational, there exists ​Z ⊆ \Y​  

such that for all ​i ∈ N​(Z)​ = ​{i ∈ N  :  ​Z​i​​ ≠ ∅}​​ and all ​W ∈ ​C​i​​​(Y ∪ Z)​​, ​​Z​i​​ ⊆ ​W​i​​​. But 
then for all ​i ∈ N​(Z)​​, ​​Y​i​​ ∉ ​C​i​​​(Y ∪ Z)​​ and ​​U​i​​​(Y ∪ Z)​ > ​U​i​​​(Y)​​. Thus, ​Z ≠ ∅​. Let 
​​Z ˆ ​  = ​ {​k​ij​​  ∈  Z  : ​​(k − 1)​​ij​​  ∉  Z}​​. Thus, ​​Z ˆ ​​ collects the “additional” goods provided 
in ​Z​ compared to ​Y​.
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Because ​Z  ≠  ∅​ and ​Z ∩ Y  =  ∅​, we have ​​Z ˆ ​  ≠  ∅​. Thus, there exist ​i, j  ∈  
N​(Z)​​ such that ​i  ≠  j​ and ​​k​ij​​  ∈ ​ Z ˆ ​​. If ​​​Z ˆ ​​→j​​  =  ∅​, then ​​Z​→j​​  =  ∅​ and ​​Y​i​​  ∈ ​ C​i​​​(Y ∪ Z)​​ 
(as ​j​ does not get additional goods in ​Z​), a contradiction. Thus, ​​​Z ˆ ​​→j​​  ≠  ∅​ and 
​​h​jl​​  ∈ ​ Z ˆ ​​ for some ​l  ∈  N​(Z)​​, and so on. But then we must a find a cycle ​​i​1​​, … , ​i​m​​​ 
such that ​​k​ ​i​1​​​i​2​​​ 

1 ​   ∈ ​ Z ˆ ​, … , ​k​ ​i​m​​​i​1​​​ 
m  ​  ∈ ​ Z ˆ ​​. But now ​Y ∪ ​{​k​ ​i​1​​​i​2​​​ 

1 ​ , … , ​k​ ​i​m​​​i​1​​​ 
m  ​}​​ is a feasible and 

individually rational allocation, a contradiction to the maximality of ​Y​. ∎

PROOF OF LEMMA 2:
We only show that condition (1) holds and remark that condition (2) can be shown 

similarly. Let ​Y, Z ⊆ ​​i​​​ be such that ​​Y​i→​​ = ​Z​i→​​​ and ​​Y​→i​​ ⊆ ​Z​→i​​​. Let ​​Y​​ ∗​ ∈ ​C​i​​​(Y)​​.  
Then (iii) is trivially satisfied as ​|​Y​ →i​ 

∗  ​| − |​Y​ i→​ ∗  ​|  =  0  =  |​Z​ →i​ 
∗  ​| − |​Z​ i→​ ∗  ​|​ for all 

​​Z​​ ∗​  ∈ ​ C​i​​​(Z)​​.
If for some ​​Z​​ ∗​ ∈ ​C​i​​​(Z)​​, ​​U​i​​​(​Y​​ ∗​)​ = ​U​i​​​(​Z​​ ∗​)​​, then ​​Y​​ ∗​ ∈ ​C​i​​​(Z)​​ and (i) and (ii) 

hold trivially. Otherwise, for some ​​Z​​ ∗​ ∈ ​C​i​​​(Z)​​, ​​U​i​​​(​Y​​ ∗​)​ < ​U​i​​​(​Z​​ ∗​)​​. But then choose 
​​U​i​​​(​Z​​ ∗​)​ − ​U​i​​​(​Y​​ ∗​)​​ contracts from ​​Z​​ ∗​\​Y​​ ∗​​, say the set ​​Z ˆ ​​, such that ​|​​Z ˆ ​​→i​​| = |​​Z ˆ ​​i→​​|​, ​​k​ij​​ ∈  
​Z ˆ ​​ with ​k > 1​ implies ​​​(k − 1)​​ij​​ ∈ ​Z ˆ ​ ∪ ​Y​​ ∗​​, and ​​k​ji​​ ∈ ​Z ˆ ​​ with ​k  >  1​ implies 
​​​(k − 1)​​ji​​  ∈ ​ Z ˆ ​ ∪ ​Y​​ ∗​​. Then we obtain ​​Y​​ ∗​ ∪ ​Z ˆ ​  ∈ ​ C​i​​​(Z)​​ (because ​​U​i​​​(​Y​​ ∗​ ∪ ​Z ˆ ​)​  
= ​ U​i​​​(​Z​​ ∗​)​​), and (i), (ii), and (iii) hold for ​​Y​​ ∗​​ and ​​Y​​ ∗​ ∪ ​ Z ˆ ​​. ∎

Appendix B: Proof of Theorem 1

This Appendix first introduces a graph theoretical tool, referred to as the 
circulation-based model (Appendix BA). It will then be demonstrated that the graph 
formulation in the circulation-based model, without loss of generality, can replace 
the min-cost flow problem when analyzing the priority mechanism (Appendix BB). 
These insights enable us to prove that the flow does not increase when a capacity is 
reduced on an arc in the graph of the circulation-based model. This is the key step in 
the proof of Theorem 1 (Appendix BC).

A. The Circulation-Based Model

Let ​ℤ​ denote the set containing all integers. For any profile ​R  ∈ ​  ̃ ​​ , con-
struct a weighted directed graph ​​D​R​​  = ​ (V, A)​​ with capacities ​c  :  A  ↦ ​ ℕ​0​​​ and 
weights ​w  :  A  ↦  ℤ​ on its arcs. For ease of notation, we write ​D​ instead of ​​D​R​​​ when-
ever the profile ​R​ is unambiguous. Each agent ​i  ∈  N​ is represented by two vertices, 
denoted by ​​i​​ in​​ and ​​i​​ out​​. These ​2n​ vertices build the vertex set ​V​ of the graph ​D​. We 
draw a directed arc between each pair of type ​​(​i​​ in​, ​i​​ out​)​​, pointing to ​​i​​ out​​ and refer to 
this arc as the inner arc of agent ​i  ∈  N​. The inner arc has capacity ​c​(​i​​ in​, ​i​​ out​)​  = ​ t​i​​​. 
If agent ​i​ finds agent ​j​ acceptable, then ​​(​j​​ out​, ​i​​ in​)​​ belongs to the (directed) arc set ​A​ 
of the graph ​D​. Any such arc is called regular and has capacity ​c​(​j​​ out​, ​i​​ in​)​  = ​​ t ̄ ​​ij​​​, 
i.e., the upper bound on the number of goods that agent ​i​ would like to receive from 
agent ​j​. Note also that the vertices of type ​​i​​ in​​ have incoming regular arcs and a single 
outgoing inner arc, while vertices of type ​​i​​ out​​ have outgoing regular arcs and a sin-
gle incoming inner arc. We define in Appendix BB the weights ​w  :  A  ↦  ℤ​ using a 
priority-order. An instance of the model is illustrated in Figure 2 (the figure contains 
some concepts which are explained later in the Appendix).
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DEFINITION 5: A circulation is a function ​C  :  A  ↦ ​ ℕ​0​​​ where

	 (i)	​ C​(u, v)​  ≤  c​(u, v)​​ for every ​​(u, v)​  ∈  A​,

	 (ii)	​​ ∑ ​(u,v)​∈A​ 
 
 ​​  C​(u, v)​  = ​ ∑ ​(v,w)​∈A​ 

 
 ​​  C​(v, w)​​ for every vertex ​v  ∈  V​.

Condition (i) is a capacity constraint which ensures that agents do not supply goods 
beyond their endowment ​​t​i​​  =  c​(​i​​ in​, ​i​​ out​)​​ and that the upper bound ​​​t ̄ ​​ij​​​ is not exceeded. 
Condition (ii) is the classical flow conservation rule, stating that the total flow of 
the incoming arcs of a vertex equals the total flow of the outgoing arcs, i.e., that an 
agent supplies and receives the same number of goods. The latter condition can also 
be formulated as

​C​(​i​​ in​, ​i​​ out​)​  = ​   ∑ 
​(​j​​ out​,​i​​ in​)​∈A

​ 
 

 ​​ C​(​j​​ out​, ​i​​ in​)​  = ​   ∑ 
​(​i​​ out​,​k​​ in​)​∈A

​ 
 

 ​​ C​(​i​​ out​, ​k​​ in​)​  for every agent i  ∈  N.​

Note that a circulation is by definition a network flow. We call ​C​(​i​​ in​, ​i​​ out​)​​ the flow 
value at agent ​i​. Circulations in a graph ​D​ are in one-to-one correspondence with 
allocations in the exchange problem, e.g., for an allocation ​x​, the corresponding 
flow value of the inner arc at agent ​i​ is ​C​(​i​​ in​, ​i​​ out​)​  = ​ t​i​​ − ​x​ii​​​, and the flow value of 
any regular arc at agent ​i​ is ​C​(​j​​ out​, ​i​​ in​)​  = ​ x​ij​​​ for all ​j  ∈  N​. The allocation value for 
agent ​i​ is defined as ​​t​i​​ − ​x​ii​​​. Another way of expressing this is that the allocation 
value ​​t​i​​ − ​x​ii​​​ of agent ​i​ in the exchange problem equals the flow value ​C​(​i​​ in​, ​i​​ out​)​​ at 
agent ​i​ in the circulation model.

B. Replacement Result

This section  demonstrates that by placing appropriate weights on the arcs in 
the graph ​D​, the maximum weight circulations correspond to the outcome of the 
min-cost flow problem used in Section IV to identify the outcome of the priority 
mechanism (Proposition  2). This result implies that the circulation-based model 

Figure 2

Note: The circulation-based model for the instance in Example 4.
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can be adopted in the proof of Theorem 1. We remark that both maximum weight 
circulations and min-cost flows can be computed efficiently, or more precisely, in 
​O​(​|E|​​ 2​ log |V|)​​ time in a graph with ​|V|​ vertices and ​|E|​ arcs , which is strongly poly-
nomial time (Orlin 1993).

Let ​π​ be a priority ordering. Let ​​t​max​​​ be the largest endowment of any agent in ​N​, 
and define the weight ​w​(u, v)​​ on each arc ​​(u, v)​​ in the directed graph ​D  = ​ (V, A)​​ 
by

(9)	 ​w​(u, v)​  = ​ {​​t​ max​ 
​2​(n+1−π​(i)​)​​​  if (u, v ) = (i ​​​​ in​, i ​​​​ out​ ) ​   

0
​ 

otherwise.
 ​​​

We now illustrate our transformation from the priority mechanism to the 
circulation-based model by means of a simple example.

Example 4: Agents are denoted by ​i, j, k​, and ​l​. The upper bounds on the acceptable 
goods are as follows: ​​​t ̄ ​​ki​​  =  1, ​​t ̄ ​​ji​​  =  2, ​​t ̄ ​​kj​​  =  2, ​​t ̄ ​​lj​​  =  1, ​​t ̄ ​​ik​​  =  3, ​​t ̄ ​​il​​  =  1, ​​t ̄ ​​jl​​  =  3​. 
All other upper bounds are set to zero. Each agent has an endowment of 3, and their 
priority-order is alphabetic.

In the circulation-based model, there are two vertex copies to each agent, con-
nected by an inner arc. The number of goods that each agent is willing to accept 
from another agent translates into an upper capacity on the regular arc connecting 
the out-vertex of the provider and the in-vertex of the receiver. In Figure 2, inner arcs 
are marked by horizontal lines, while regular arcs are bent and colored. Arc weights 
and capacities are written above and below each arc, respectively. Due to the alpha-
betic priority order and ​​t​max​​​ being three units, the arc weights of agents ​i, j, k,​ and ​l​ on 
the inner arcs are given by ​​3​​ 8​​, ​​3​​ 6​​, ​​3​​ 4​​, and ​​3​​ 2​​, respectively. All arc weights on regular 
arcs are set to zero.

The max weight circulation in the network can be computed efficiently, and it 
has weight ​3 ⋅ ​3​​ 8​ + 3 ⋅ ​3​​ 6​ + 3 ⋅ ​3​​ 4​ + 1 ⋅ ​3​​ 2​​. It saturates all edges except the dotted ​​
(​l​​ out​, ​i​​ in​)​​, which is left empty, and the dashed ​​(​l​​ out​, ​j​​ in​)​​ and ​​(​l​​ in​, ​i​​ out​)​​, both of which 
carry one unit of flow. More precisely, agent ​i​ sends two units of his good to agent ​j​ 
and one unit of his good to agent ​k​, agent ​j​ sends two units of his good to agent ​k​ and 
one unit of his good to agent ​l​, agent ​k​ sends three units of his good to agent ​i​, and 
agent ​l​ sends one unit of his good to agent ​j​.

Let ​w​(C)​​ denote the weighted sum of flow values of the agents in ​N​ at circula-
tion ​C​, i.e., ​w​(C)​  = ​ ∑ i∈N​ 

 
 ​​  C​(​i​​ in​, ​i​​ out​)​ ⋅ w​(​i​​ in​, ​i​​ out​)​​.

PROPOSITION 2: For any given profile ​R  ∈ ​  ̃ ​​, let ​C​ be a maximum weight cir-
culation where the weights are defined by condition (9). Let ​​C ′ ​​ be the circulation 
corresponding to an allocation ​​x ′ ​​ selected for ​R​ by a priority mechanism φ based 
on ​π​. Then ​​C ′ ​​(​i​​ in​, ​i​​ out​)​  =  C​(​i​​ in​, ​i​​ out​)​​ for each ​i  ∈  N​.

PROOF:
As in the statement of the proposition, let ​C​ be a maximum weight circulation, 

and let ​​C ′ ​​ be the circulation corresponding to an allocation ​​x ′ ​​ selected by a priority 
mechanism. Suppose, to obtain a contradiction, that ​​C ′ ​​(​j​​ in​, ​j​​ out​)​  ≠  C​(​j​​ in​, ​j​​ out​)​​ for 
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some ​j  ∈  N​. Let agent ​i​ be the agent with the highest priority in ​π​ where this holds. 
Suppose also, without loss of generality, that ​π​(k)​  =  k​ for all ​k  ∈  N​. To reach the 
desired contradiction, we consider two cases.

Case 1: ​​C ′ ​​(​i​​ in​, ​i​​ out​)​  <  C​(​i​​ in​, ​i​​ out​)​​. In this case, the maximum weight circulation ​C​ 
assigns a higher allocation value to agent ​i​ than the priority mechanism. We show by 
induction that this contradicts the rules of the priority mechanism. Suppose first that 
agent ​i​ is the highest-ranked agent according to the priority-order ​π​, and recall that 
the priority mechanism, by construction, restricts the set of maximal allocations to 
those that maximize the allocation value of ​i​ (see condition (3) in Section III). Thus, 
there is no allocation that assigns agent ​i​ a higher allocation value than the alloca-
tions in this chosen set and, consequently, no circulation that assigns agent ​i​ a higher 
value. Hence, agent ​i​ cannot be the agent with the highest priority. Suppose now that 
agent ​i​ is the second-highest-ranked agent according to the priority-order ​π​. Again, 
by condition (3), this agent restricts the set of allocations further. And so, the max-
imum weight circulation ​C​ is still in the chosen set when agent ​i​ restricts the set of 
allocations further, and it can, consequently, not have a higher allocation value for 
agent ​i​ than ​​C ′ ​​. This argument can be repeated inductively to reach the conclusion 
that it cannot be the case that ​​C ′ ​​(​i​​ in​, ​i​​ out​)​  <  C​(​i​​ in​, ​i​​ out​)​​.

Case 2: ​​C ′ ​​(​i​​ in​, ​i​​ out​)​  >  C​(​i​​ in​, ​i​​ out​)​​. Note first that both ​C​ and ​​C ′ ​​ are feasible circu-
lations at profile ​R​. Because agent ​i​ is the agent with the highest priority in ​π​ where ​​
C ′ ​​(​i​​ in​, ​i​​ out​)​  ≠  C​(​i​​ in​, ​i​​ out​)​​, by assumption, it follows that ​​C ′ ​​(​k​​ in​, ​k​​ out​)​  =  C​(​k​​ in​, ​k​​ out​)​​ 
for all agents ​k  =  1, … , i − 1​. It will be demonstrated that agents ​i + 1, … , n​ can-
not make up for the loss ​C​ suffered on arc ​​(​i​​ in​, ​i​​ out​)​​, and thus ​C​ cannot be of maxi-
mum weight since ​​C ′ ​​ is a feasible circulation at profile ​R​. Recall first that the set ​​ℕ​0​​​ 
contains only positive integers, so the difference between ​​C ′ ​​(​i​​ in​, ​i​​ out​)​​ and ​C​(​i​​ in​, ​i​​ out​)​​ 
is at least 1. By construction of the weights on the inner arcs, defined by condition 
(9), it then follows that

(10)	 ​​[​C ′ ​​(​i​​ in​, ​i​​ out​)​ − C​(​i​​ in​, ​i​​ out​)​]​ ⋅ ​t​ max​ 
2​(n−i+1)​​  ≥ ​ t​ max​ 

2​(n−i+1)​​.​

Note next that in the extreme case, all agents with lower priorities than agent ​i​ have 
flow value zero in ​​C ′ ​​ and a flow value of ​​t​max​​​ in ​C​. This means that the weighted sum 
of the flow values at agents ​i + 1, … , n​ at circulation ​C​ is at most

(11)	 ​​t​max​​ ⋅ ​ ∑ 
j=i+1

​ 
n

  ​​ ​t​ max​ 
2​(n−j+1)​​.​

Now, the value of the sum (11) is strictly lower than the right-hand side of 
inequality (10). Consequently, even in the extreme case when all agents with lower 
priorities than agent ​i​ have flow value zero in ​​C ′ ​​ and a flow value of ​​t​max​​​ in ​C​, it 
holds that ​w​(​C ′ ​)​  >  w​(C)​​. However, this contradicts that ​C​ is a maximum weight 
circulation since ​​C ′ ​​ is a feasible circulation at graph ​​D​R​​​. ∎



VOL. 13 NO. 1� 367ANDERSSON ET AL.: ORGANIZING TIME EXCHANGES

C. The Proof

Let φ be the priority mechanism based on ​π​ where ​π​(i)​  =  i​ for 
all ​i  ∈  N​. To obtain a contradiction, suppose that φ can be manipulated by some 
agent ​i ∈ N​ at a profile ​R ∈ ​ ̃ ​​ . This means that there are two profiles ​R ∈ ​ ̃ ​​  and 
​​R ′ ​ = ​(​R​ i​ ′​, ​R​−i​​)​ ∈ ​ ̃ ​​ such that for ​x = φ​(R)​​ and ​​x ′ ​ = φ​(​R ′ ​)​​, we have ​​x​ i​ ′​ ​P​i​​ ​x​i​​​. Note 
that ​​R​ i​ ′​  ≠ ​ R​i​​​. Let ​​C​​ 1​​ and ​​C​​ 2​​ be the maximum weight circulations for the graphs 
​​D​R​​​ and ​​D​​R ′ ​​​​ induced by the profiles ​R​ and ​​R ′ ​  = ​ (​R​ i​ ′​, ​R​−i​​)​​, respectively.

The next lemma shows that we may suppose that the set of acceptable agents 
reported by agent ​i​ at preference relation ​​R​ i​ ′​​ is a proper subset of the set of acceptable 
agents reported by agent ​i​ at preference relation ​​R​i​​​.

LEMMA 3: Without loss of generality, we may suppose ​​A​i​​​(​R​ i​ ′​)​  ⊆ ​ A​i​​​(​R​i​​)​​.

PROOF: 
We first show ​​U​i​​​(​R​i​​)​ ⊆ ​U​i​​​(​R​ i​ ′​)​​. To see this, suppose ​j ∈ ​U​i​​​(​R​i​​)​​ but ​j ∉ ​U​i​​​(​R​ i​ ′​)​​, 

i.e., that agent ​j​ is unacceptable under ​​R​i​​​ but acceptable under ​​R​ i​ ′​​. Since ​​x​ i​ ′​ ​P​i​​ ​x​i​​​, it 
must then hold that ​​x​ ij​ ′ ​  =  0​ by definition of the preferences in ​​​ ̃ ​​ i​​​. Hence, any 
regular arc of type ​​(​j​​ out​, ​i​​ in​)​​ where ​j  ∉ ​ U​i​​​(​R​ i​ ′​)​​ in the graph ​​D​​R ′ ​​​​ but ​j  ∈ ​ U​i​​​(​R​i​​)​​ 
in the graph ​​D​R​​​ will not be active in the solution ​​C​​ 1​​ at profile ​​R ′ ​​. Hence, ​​U​i​​​(​R​i​​)​  
⊆ ​ U​i​​​(​R​ i​ ′​)​ ∪ ​{j  ∈ ​ A​i​​​(​R​ i​ ′​)​  :  ​x​ i​(n+j)​​ ′  ​  =  0}​​.

But then we may choose ​​R​ i​ ′′​​ such that ​​A​i​​​(​R​ i​ ′′​)​ = ​A​i​​​(​R​ i​ ′​)​\​{j ∈ ​A​i​​​(​R​ i​ ′​)​  :  ​x​ i​(n+j)​​ ′  ​ = 0}​​ 
and ​​​t ̄ ​​ ik​ ′′ ​ = ​​t ̄ ​​ ik​ ′ ​​ for all ​k ∈ ​A​i​​​(​R​ i​ ′′​)​​, and ​​C​​ 1​​ remains a solution for ​​R ″ ​ = ​(​R​ i​ ′′​, ​R​−i​​)​  
∈ ​ ̃ ​​. But for ​​x ″ ​  =  φ​(​R ″ ​)​​, this implies ​​x​ i​ ′′​ ​I​i​​ ​x​ i​ ′​​ and ​​x​ i​ ′′​ ​P​i​​ ​x​i​​​. Hence, ​​A​i​​​(​R​ i​ ′′​)​  ⊆ ​ A​i​​​(​R​i​​)​​ 
and ​​x​ i​ ′′​ ​P​i​​ ​x​i​​​. ∎

Recall now that for any profile in ​R  ∈ ​  ̃ ​​ , each agent ​k  ∈  N​ reports a set of 
acceptable agents ​​A​k​​​(​R​k​​)​​ together with an upper bound ​​​t ̄ ​​kj​​​ on the number of goods that 
agent ​k  ∈  N​ at most would like to receive from each acceptable agent ​j  ∈ ​ A​k​​​(​R​k​​)​​. 
By Remark 1, the report ​​R​k​​​ is equivalent to the vector ​​​t ̄ ​​k​​​ where ​​​t ̄ ​​kk​​  = ​ t​k​​​ and ​​​t ̄ ​​kj​​  =  0​ 
for all ​j  ∈ ​ U​k​​​(​R​k​​)​​. This, together with the conclusion in Lemma 3, implies that there 
exists at least one agent ​j​ that is acceptable for agent ​i​ under ​​R​i​​​ where agent ​i​ reports 
a strictly lower or higher bound ​​​t ̄ ​​ ij​ ′ ​​ at profile ​​R ′ ​​ than under profile ​R​ (i.e., ​​​t ̄ ​​ ij​ ′ ​  < ​​ t ̄ ​​ij​​​ 
or ​​​t ̄ ​​ ij​ ′ ​  > ​​ t ̄ ​​ij​​​ ). In general, a manipulation ​​R​ i​ ′​​ by agent ​i​ can consist of both underre-
porting and overreporting values of ​​​t ̄ ​​ij​​​ for acceptable agents. There are two possible 
cases for manipulations: one with overreporting and the other with only underre-
porting bounds. We will first show that overreporting any bound cannot be benefi-
cial, and then we prove that no combination of underreporting bounds can result in 
a better allocation either.

First, consider the case where there is overreporting. If there exists ​j  ∈  N\​{i}​​  
such that ​​x​ ij​ ′ ​  > ​​ t ̄ ​​ij​​​, then by definition of ​​​ ̃ ​​ i​​​, ​​ω​i​​ ​P​i​​ ​x​ i​ ′​​, and since ​x​ is individu-
ally rational under ​R​, we have ​​x​i​​ ​P​i​​ ​x​ i​ ′​​, a contradiction. Otherwise ​​x​ ij​ ′ ​  ≤ ​​ t ̄ ​​ij​​​ for all 
​j  ∈  N\​{i}​​, and we can just replace ​​​t ̄ ​​ i​ ′ ​​ with ​​​t ̄ ​​ i​ ′′​​ such that ​​​t ̄ ​​ ij​ ′′ ​  =  min​{​​t ̄ ​​ij​​, ​​t ̄ ​​ ij​ ′ ​}​​ for 
all ​j  ∈  N\​{i}​​. Let ​​R​ i​ ′′​​ denote ​i​’s preference associated with ​​​t ̄ ​​ i​ ′′​​. Then ​​x ′ ​​ is still a 
maximizer for the profile ​​(​R​ i​ ′′​, ​R​−i​​)​​, and therefore the manipulation only consists 
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of underreporting upper bounds which are below ​​​t ̄ ​​i​​​. Second, it remains to estab-
lish that agent ​i​ cannot manipulate by underreporting the upper bounds for accept-
able agents, i.e., that ​​​t ̄ ​​ ij​ ′ ​  ≤ ​​ t ̄ ​​ij​​​ for all ​j  ∈  N\​{i}​​. Below we are going to show that 
agent ​i​ cannot gain by underreporting one upper bound for an acceptable agent. 
This is enough to establish that agent ​i​ never can gain by reporting a lower bound 
for several agents at the same time. Because any such misreport can be decomposed 
into a sequence of manipulations in which at each step only one upper bound ​​​t ̄ ​​ij​​​ 
is changed at the time and agent ​i​ is never made better off at any step. Formally, 

let ​k  ∈ ​ A​i​​​(​R​i​​)​​ for which ​​​t ̄ ​​ ik​ ′ ​  < ​​ t ̄ ​​ik​​​, and consider the misreport ​​​t ̄ ​​ i​ 
​(1)​

​​ where ​​​t ̄ ​​ ij​ 
​(1)​

​  = ​​ t ̄ ​​ij​​​ 

for all ​j  ≠  k​ and ​​​t ̄ ​​ ik​ 
​(1)​

​  = ​​ t ̄ ​​ ik​ ′ ​​. Let ​​x​​ ​(1)​​​ be the allocation chosen by the priority mech-

anism when ​i​ reports ​​t​​ ​(1)​​​. Below we show that agent ​i​ cannot gain by reporting ​​​t ̄ ​​ i​ 
​(1)​

​​ 

instead of ​​​t ̄ ​​i​​​. In particular, ​​∑ j∈​A​i​​​(​R​i​​)​​ 
 
 ​​ ​ x​ij​​  ≥ ​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​ ​ x​ ij​ 

​(1)​
​​. Thus, ​​x​i​​ ​R​i​​ ​x​ i​ 

​(1)​
​​. If there is 

another agent ​ℓ  ≠  k​ such that ​​​t ̄ ​​ iℓ​ 
​(1)​

​  ≠ ​​ t ̄ ​​ iℓ​ ′ ​​, then consider ​​​t ̄ ​​​ ​(2)​​​ where ​​​t ̄ ​​ ij​ 
​(2)​

​  = ​​ t ̄ ​​ ij​ 
​(1)​

​​ 

for all ​j  ≠  ℓ​ and ​​​t ̄ ​​ iℓ​ 
​(2)​

​  = ​​ t ̄ ​​ iℓ​ ′ ​​. Suppose again that agent ​i​ cannot gain by report-

ing ​​​t ̄ ​​ i​ 
​(2)​

​​ instead of ​​​t ̄ ​​ i​ 
​(1)​

​​. This means again that ​​∑ j∈​A​i​​​(​R​i​​)​​ 
 
 ​​ ​ x​ ij​ 

​(1)​
​  ≥ ​ ∑ j∈​A​i​​​(​R​i​​)​​ 

 
 ​​ ​ x​ ij​ 

​(2)​
​​.  

Thus, by transitivity, ​​x​i​​ ​R​i​​ ​x​​ ​(2)​​​. This argument can be repeated inductively until the 

point that ​​​t ̄ ​​ i​ 
​(p)​

​  = ​​ t ̄ ​​ i​ ′ ​​, and if in each step agent ​i​ never gains by reporting ​​​t ̄ ​​ i​ 
​(j)​

​​ instead 
of ​​​t ̄ ​​​ ​(j−1)​​​, we have shown that agent ​i​ cannot gain by reporting ​​​t ̄ ​​ i​ ′ ​​ instead of ​​​t ̄ ​​i​​​. Hence, 
to complete the proof of Theorem 1, it is enough to show that agent ​i​ cannot gain by 
misreporting ​​​t ̄ ​​ ij​ ′ ​​ for one agent ​j  ∈ ​ A​i​​​(​R​i​​)​​.

Thus, to prove non-manipulability of the priority mechanism, it only remains to 
rule out that agent ​i​ cannot gain by reporting a strictly lower bound ​​​t ̄ ​​ij​​​. Translatied into 
the terminology of the circulation-based model, this can equivalently be expressed 
as the flow value ​C​(​i​​ in​, ​i​​ out​)​​ at agent ​i​ in a maximum weight circulation cannot 
be increased by reducing the capacity on a regular arc ​​(​j​​ out​, ​i​​ in​)​​. Given this insight, a 
large part of the remaining proof will focus on a regular arc ​​(​j​​ out​, ​i​​ in​)​​.

Recall now that ​​C​​ 1​​ denotes the maximum weight circulations for the true prefer-
ences ​R​ induced by the graph ​​D​R​​​ and that ​​C​​ 2​​ denotes the maximum weight solution 
for the misrepresented preferences ​​R ′ ​​ induced by the graph ​​D​​R ′ ​​​​. Furthermore, by the 
assumption that agent ​i​ can manipulate the priority mechanism, it follows that ​​C​​ 2​​ 
has a larger flow value at agent ​i​ than ​​C​​ 1​​ does, i.e., ​​C​​ 2​​(​i​​ in​, ​i​​ out​)​  > ​ C​​ 1​​(​i​​ in​, ​i​​ out​)​​. By 
construction of the weights in condition (9), the circulation value of ​​C​​ 2​​ cannot be 
the same as the circulation value of ​​C​​ 1​​ if the flow value differs for at least one agent. 
Thus, the circulation value of ​​C​​ 2​​ must be strictly smaller than the circulation value 
of ​​C​​ 1​​, i.e., ​w​(​C​​ 2​)​  <  w​(​C​​ 1​)​​. Note also that the circulation ​​C​​ 2​​ is a feasible circula-
tion in ​​D​R​​​ since the flows remain below the capacity on each arc, and it preserves 
flow conservation. However, the circulation ​​C​​ 2​​ is not optimal in the graph ​​D​R​​​ since 
the circulation value of ​​C​​ 2​​ is strictly smaller than the circulation value of ​​C​​ 1​​, and the 
circulation ​​C​​ 1​​ is optimal in ​​D​R​​​.

Consider next the function defined by the circulation ​​C​​ 1​ − ​C​​ 2​​ where 
​​C​​ 1​​(u, v)​ − ​C​​ 2​​(u, v)​  ∈  ℤ​ for each arc ​​(u, v)​​ in the graph ​​D​R​​​. This function assigns 
a negative value to the arc ​​(u, v)​​ if the flow through the arc is larger in circulation ​​C​​ 2​​ 
than in circulation ​​C​​ 1​​. For convenience, one can think of these “negative” arcs as 
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arcs turned backward, with the usual positive flow value on them. Since both ​​C​​ 1​​ 
and ​​C​​ 2​​ are circulations in the graph ​​D​R​​​, their difference also obeys flow conserva-
tion, and, as such, it can be decomposed into cycles.

A cycle decomposition is a collection of directed cycles in the graph so that the 
flow value on all edges of a specific cycle in the decomposition is the same, and 
the sum of flow values in all cycles containing an arc ​​(u, v)​​ equals the flow value 
on ​​(u, v)​​. The capacity or the weight on the edges plays no role in the decompo-
sition. It is known that any feasible circulation has a cycle decomposition  (Ford 
and Fulkerson 1956). In the next paragraph, we will construct such a cycle decom-
position of the circulation ​​C​​ 1​ − ​C​​ 2​​. For simplicity, we will decompose our circula-
tion into cycles of flow value 1.

Note first that a cycle decomposition of ​​C​​ 1​ − ​C​​ 2​​ need not be unique for the 
profiles ​R​ and ​​R ′ ​​. To obtain one such decomposition, we use a simple inductive 
algorithm that produces a cycle decomposition of ​​C​​ 1​ − ​C​​ 2​​ in a finite number of 
iterations. This algorithm uses the flow value of ​​C​​ 1​ − ​C​​ 2​​ on each arc ​​(u, v)​​ in the 
graph ​​D​R​​​ but will not use any information about the arc capacities or weights (arc 
weights are only considered below). First, identify any directed cycle, say ​​, based 
on the circulation ​​C​​ 1​ − ​C​​ 2​​ and take its forward or backward arc with a lowest abso-
lute flow value on it. Suppose that the lowest absolute flow value at some agent 
in the cycle ​​ is ​q​, then ​q​ feasible cycles of type ​​ can be identified. These cycles 
represent the first ​q​ cycles in the decomposition of ​​C​​ 1​ − ​C​​ 2​​. Then, reduce the flow 
value on each arc included in the cycle ​​ by ​q​. This will give an “updated” circula-
tion, based on the “original” circulation ​​C​​ 1​ − ​C​​ 2​​. Notice that the updated circulation 
is indeed a circulation, preserving flow conservation at each vertex, but, compared 
to ​​C​​ 1​ − ​C​​ 2​​, it is guaranteed to have at least one more arc with zero flow value. 
We proceed in this manner until the whole circulation ​​C​​ 1​ − ​C​​ 2​​ is decomposed into 
cycles. Note also that since ​​ℕ​0​​​ is restricted to a set of positive bounded integers, this 
procedure ends in a finite number of iterations. Moreover, the absolute flow value 
on an arc monotonically (but not strictly monotonically) decreases in each inductive 
step, until it reaches 0.

Note that the cycles in the decomposition are not necessarily arc-disjoint from 
each other (i.e., several distinct cycles in the decomposition can pass through 
the same arc), but, due to the inductive argument above, each arc in the cycle 
decomposition is either a forward arc or a backward arc, depending on the sign 
of ​​C​​ 1​(u, v) − ​C​​ 2​(u, v)​. More precisely, forward arcs are positive, while backward 
arcs are negative. Thus, it cannot be the case that one cycle in the decomposition 
uses an arc with positive value, while another cycle uses the same arc with nega-
tive value.

Consider now the cycle decomposition of the circulation ​​C​​ 1​ − ​C​​ 2​​ as constructed 
above. We now turn toward arc weights: the total weight of a cycle in the decompo-
sition is defined as the sum of weights on each arc in the cycle. Based on the sign of 
the total weight of a cycle, we distinguish positive, zero, and negative weight cycles 
in our decomposition. A positive weight cycle is called an augmenting cycle. Note 
that all augmenting cycles pass through ​​(​j​​ out​, ​i​​ in​)​​, because any augmenting cycle 
which does not pass through ​​(​j​​ out​, ​i​​ in​)​​ would increase the circulation value of ​​C​​ 2​​ 
in ​​D​​R ′ ​​​​, which is impossible since ​​C​​ 2​​ is optimal in the graph ​​D​​R ′ ​​​​.
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LEMMA 4: Suppose that ​​C​​ 1​ − ​C​​ 2​​ is decomposed into cycles using the inductive 
decomposition algorithm from above. Then,

	 (i)	 there exists an augmenting cycle,

	 (ii)	 a cycle of weight zero consists exclusively of arcs of weight zero,

	 (iii)	 there are no negative weight cycles.

PROOF:
The proof of part (i) follows directly since ​w​(​C​​ 1​)​  >  w​(​C​​ 2​)​​ and ​w​(​C​​ 1​)​​ equals 

​w​(​C​​ 2​)​​ plus the weight of each cycle in the cycle decomposition of ​​C​​ 1​ − ​C​​ 2​​. Part (ii) 
follows by construction of the weights, i.e., a cycle of weight zero consists exclu-
sively of arcs of weight zero (obviously, no combination of the weights on inner arcs 
with coefficients in the open interval between 0 and ​​t​max​​​ can add up to zero).

Part (iii) is proved by contradiction. Suppose that there is a cycle ​​ of negative 
total weight in the cycle decomposition of ​​C​​ 1​ − ​C​​ 2​​. Let the reverse of ​​ be denoted 
by ​​ 

←
 ​​. The reverse ​​ 

←
 ​​ has positive total weight and preserves the sign of ​​C​​ 2​  −  ​C​​ 1​​ on 

each of its arcs by construction of the inductive decomposition algorithm. Moreover, 
we will show that ​​ 

←
 ​​ can be added to ​​C​​ 1​​ without violating flow conservation or any 

capacity constraint in ​​D​R​​​. Thus, ​​C​​ 1​ + ​ 
←

 ​​ is a circulation of larger weight than ​​C​​ 1​​. 
Let now ​​(u, v)​​ be an arbitrary arc in the reverse cycle ​​ 

←
 ​​. It will be demonstrated that

(12)	 ​0  ≤ ​ C​​ 1​​(u, v)​ + ​ 
←

 ​​(u, v)​  ≤  c​(u, v)​.​

Condition (12) implies that ​​C​​ 1​​ cannot be a maximum weight circulation in the 
graph ​​D​R​​​, which contradicts our assumption. We need to consider two cases.  
Suppose first that ​​ 

←
 ​​(u, v)​  ≥  0​. Then

	​​ C​​ 1​​(u, v)​ + ​ 
←

 ​​(u, v)​  ≤ ​ C​​ 1​​(u, v)​ + ​[​C​​ 2​​(u, v)​ − ​C​​ 1​​(u, v)​]​  = ​ C​​ 2​​(u, v)​  ≤  c​(u, v)​.​

Note also that because ​​C​​ 1​​(u, v)​​ and ​​ 
←

 ​​(u, v)​​ are nonnegative at the arc ​​(u, v)​​, it 
follows directly that ​​C​​ 1​​(u, v)​ + ​ 

←
 ​​(u, v)​  ≥  0​. Hence, condition (12) holds when 

​​ 
←

 ​​(u, v)​  ≥  0​. Suppose next that ​​ 
←

 ​​(u, v)​  <  0​. In this case,

	​​ C​​ 1​​(u, v)​ + ​ 
←

 ​​(u, v)​  < ​ C​​ 1​​(u, v)​  ≤  c​(u, v)​.​

Furthermore,

	​​ C​​ 1​​(u, v)​ + ​ 
←

 ​​(u, v)​  ≥ ​ C​​ 1​​(u, v)​ + ​[​C​​ 2​​(u, v)​ − ​C​​ 1​​(u, v)​]​  = ​ C​​ 2​​(u, v)​  ≥  0.​

Hence, condition (12) also holds when ​​ 
←

 ​​(u, v)​  <  0​. ∎

Lemma 4 thus demonstrated that all cycles in the cycle decomposition of ​​C​​ 1​ − ​C​​ 2​​, 
which pass through an inner arc, are augmenting cycles. However, we do not know 
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whether these cycles use the arc ​​(​j​​ out​, ​i​​ in​)​​ as a forward arc or as a backward arc. The 
following lemma sheds light on this.

LEMMA 5: Suppose that ​​C​​ 1​ − ​C​​ 2​​ is decomposed into cycles using the inductive 
decomposition algorithm from above, and let ​​(​j​​ out​, ​i​​ in​)​​ be an arbitrary arc in some 
cycle in the cycle decomposition of ​​C​​ 1​ − ​C​​ 2​​. Then ​​(​j​​ out​, ​i​​ in​)​​ is a forward arc.

PROOF:
Note first that ​​C​​ 2​​(​j​​ out​, ​i​​ in​)​​ is bounded from above by the decreased capacity of ​​

(​j​​ out​, ​i​​ in​)​​ in ​​D​​R ′ ​​​​. If ​​C​​ 1​​(​j​​ out​, ​i​​ in​)​  ≤ ​ C​​ 2​​(​j​​ out​, ​i​​ in​)​​, then ​​C​​ 1​​ is feasible in the graph ​​D​​R ′ ​​​​ and 
has a larger weight than ​​C​​ 2​​, which contradicts the optimality of ​​C​​ 2​​ in the graph ​​D​​R ′ ​​​​. 
Thus, ​​C​​ 1​​(​j​​ out​, ​i​​ in​)​ − ​C​​ 2​​(​j​​ out​, ​i​​ in​)​  >  0​, which implies that ​​(​j​​ out​, ​i​​ in​)​​ is a forward arc 
in all cycles in the decomposition of ​​C​​ 1​ − ​C​​ 2​​. ∎

Finally, consider the flow value ​​C​​ 1​​(​i​​ in​, ​i​​ out​)​ − ​C​​ 2​​(​i​​ in​, ​i​​ out​)​​. To prove Theorem 1, 
we only need to establish that ​​C​​ 1​​(​i​​ in​, ​i​​ out​)​ − ​C​​ 2​​(​i​​ in​, ​i​​ out​)​  ≥  0​ because this contra-
dicts the assumption that ​​x​ i​ ′​ ​P​i​​ ​x​i​​​. For this condition to be false, the arc ​​(​i​​ in​, ​i​​ out​)​​ 
must be a backward arc in at least one cycle in the cycle decomposition of ​​C​​ 1​ − ​C​​ 2​​. 
However, as concluded above, being a backward arc in one cycle also implies being 
a backward arc in all cycles. From Lemma  4, we know that all cycles that pass 
through ​​(​i​​ in​, ​i​​ out​)​​ are augmenting cycles. Lemma 5 then states that the augmenting 
cycles use ​​(​j​​ out​, ​i​​ in​)​​ as a forward arc, and they must, consequently, leave ​​i​​ in​​ either as 
a forward arc, along the only outgoing arc ​​(​i​​ in​, ​i​​ out​)​​, or as a backward arc, along any 
of the regular arcs running to ​​i​​ in​​. Neither of these two cases allows ​​(​i​​ in​, ​i​​ out​)​​ to be a 
backward arc. This concludes the proof and shows that agent ​i​ cannot manipulate 
the priority mechanism ​φ​ at any profile ​R  ∈ ​  ̃ ​​ . ∎
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