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Abstract

We examine the strategy-proof allocation of multiple resources; an application is the assignment of pack-
ages of tasks, workloads, and compensations among the members of an organization. In the domain of 
multidimensional single-peaked preferences, we find that any allocation mechanism obtained by maxi-
mizing a separably concave function over a polyhedral extension of the set of Pareto-efficient allocations is 
strategy-proof. Moreover, these are the only strategy-proof, unanimous, consistent, and resource-monotonic 
mechanisms. These mechanisms generalize the parametric rationing mechanisms (Young, 1987), some of 
which date back to the Babylonian Talmud.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

This paper introduces incentive compatible mechanisms to allocate multiple resources. Appli-
cations include the assignment of bundles of tasks, workloads, support personnel, and compen-
sations among a research staff or among an academic department’s faculty. In these allocation 
problems cash transfers are constrained or impossible, resources are not necessarily disposable, 
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and preferences cannot be assumed to be monotone. This paper studies the case where prefer-
ences over assignments are “multidimensional single-peaked”: an agent has an ideal amount of 
each resource; increases in the amount of a single resource leaving her below the ideal for that 
resource make her better off, increases beyond it make her worse off.

As in most economic design problems, the relevant information to evaluate the welfare impact 
of choosing a mechanism, the preferences of the agents involved, is privately held. Success-
ful real-life mechanisms overcome this difficulty and the resulting incentives for manipulation 
by making truthful preference revelation a dominant strategy. These mechanisms are known as 
strategy-proof and examples include the matching mechanisms in school choice (Abdulkadiroğlu 
and Sönmez, 2003; Pathak and Sönmez, 2008; Abdulkadiroğlu et al., 2009), kidney exchange 
(Roth et al., 2004, 2005), and entry level labor markets (as surveyed by Roth, 2002). The focus 
on dominant strategy incentive compatibility is due to its minimal assumptions about agents’ 
knowledge and behavior. Since reporting preferences truthfully is a dominant strategy, equilib-
rium behavior does not depend on beliefs, common knowledge of rationality and the information 
structure, etc. This gives a predictive power and a robustness that are important for practical 
mechanism design (Wilson, 1987; Bergemann and Morris, 2005).

Unfortunately, in the resource allocation problems studied here, sequential dictatorship is 
essentially the only strategy-proof and efficient mechanism.1 This mechanism is neither indi-
vidually rational nor equitable. Often these distributional objectives will override efficiency and 
thus exclude this mechanism. In other words, the mechanism designer faces a tradeoff between 
efficiency and any other objective she may want to implement. This paper describes the class of 
strategy-proof mechanisms that avoid a number of drawbacks once efficiency is relaxed.

First, we exclude the most inefficient mechanisms. Every mechanism in the class is unani-
mous: if an allocation yielding each agent her ideal assignment is feasible, then the mechanism 
delivers this allocation. Though sequential dictatorship is the only efficient mechanism in the 
class, strongly egalitarian mechanisms are also members.

Second, we exclude mechanisms that recommend allocations contradicting each other. 
A mechanism is consistent if its recommendations in problems involving different groups of 
agents and resources are coherent.2

Third, we exclude mechanisms not responding well to changes in the availability of resources. 
A mechanism is resource-monotonic if all agents are made at least as well off in response to 
certain changes in the availability of resources that can unambiguously make everyone better off. 
This embodies a basic solidarity notion.3

Every strategy-proof, unanimous, consistent, and resource-monotonic mechanism is specified 
by a list of strictly concave functions (Theorem 1). These functions determine how heavily an 
agent’s welfare is weighed against another’s. According to the scarcity of resources, a function is 
drawn from this list for each agent and each resource. The sum of these functions is then maxi-
mized subject to efficiency constraints. The unique maximizer is the allocation recommended by 

1 Sequential dictatorship is the mechanism whereby agents are arranged sequentially, and resources are allocated ac-
cordingly. The first agent in the sequence is assigned her best possible bundle. Conditional on this, the second agent is 
assigned her best possible bundle, and so forth.

2 Consistency is one of the most thoroughly studied principles in resource allocation. See Thomson (2011a) for an 
overview. Balinski (2005) and Thomson (2012) discuss the normative content of consistency which Balinski calls “co-
herence”.

3 See Thomson (2011b) for an overview of solidarity properties in economic environments.
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the mechanism. We call the mechanisms defined in this way separably concave. Appropriately 
specifying the list of strictly concave functions defines mechanisms satisfying additional design 
objectives: when resources are privately owned, so that each agent starts off with an endowment 
of the resources, individual rationality with respect to these endowments has implications on the 
functional forms of the functions. Fairness properties like “no-envy” (Foley, 1967) or “fair net 
trades” (Schmeidler and Vind, 1972) can also be achieved by appropriately specifying the list of 
functions (see Section 6).

The rest of this paper is organized as follows. Section 2 overviews the most relevant literature. 
Section 3 introduces the model. Section 4 introduces the strategic and normative properties of 
mechanisms. Section 5 introduces the separably concave mechanisms and contains the main 
results. Section 6 illustrates the flexibility these mechanisms have to accommodate additional 
design criteria. All proofs are collected in Appendix A.

2. Related literature

Perhaps the simplest resource allocation problem within our framework is an Edgeworth 
box economy. Already here, Hurwicz (1972) established that no individually rational allocation 
mechanism is strategy-proof and efficient. In fact, in a two-agent classical collective endowment 
economy, a strategy-proof and efficient mechanism is dictatorial (Zhou, 1991; Schummer, 1997;
Goswami et al., 2014).4

These impossibility results depend critically on the multidimensionality of assignments. If a 
single divisible resource is to be allocated among agents with single-peaked preferences, there 
is a strategy-proof and efficient mechanism satisfying various equity properties, the “uniform 
rule” (Sprumont, 1991). Moreover, extensive classes of strategy-proof and efficient mechanisms 
satisfying other desirable properties are known (Barberà et al., 1997; Moulin, 1999; Massó and 
Neme, 2007). These properties include consistency (Thomson, 1994a; Dagan, 1996) and various 
solidarity notions (Thomson, 1994b, 1995, 1997).

Most relevantly, in the allocation of a single resource among agents with single-peaked 
preferences, Moulin (1999) characterized the class of strategy-proof, efficient, and consistent 
mechanisms satisfying a physical resource-monotonicity property. These mechanisms are de-
scribed by means of “fixed paths” along which the resource is distributed. In the special case 
of our model where a single resource is to be allocated, our model coincides with Moulin’s, 
and the strategy-proof, unanimous, and consistent mechanisms satisfying our welfare-based 
resource-monotonicity property (see Section 4) are in fact efficient and satisfy Moulin’s physical 
resource-monotonicity property (see Section 6). This has three consequences: it gives an intu-
itive description of Moulin’s mechanisms in terms of the maximization of a separably concave 
function akin to a social welfare function, it tightens Moulin’s characterization since unanimity 
is weaker than efficiency (Theorem 2), and it replaces Moulin’s physical resource-monotonicity 
property by a more appealing welfare-based property (Theorem 1).

Moving beyond the allocation of a single resource, the natural multidimensional extension 
of Moulin’s resource-monotonicity condition (“physical resource-monotonicity” in Section 5) 
is even less compelling than our welfare-based resource-monotonicity property. The physical 
condition requires that, upon an increase in the availability of one of the resources, no agent’s 

4 Essentially, the conclusions are as grim when more than two agents are involved. See Goswami et al. (2014), Serizawa
(2002), and the references therein.
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assignment of any resource decreases. However, the arrival of new resources could potentially 
be used to compensate agents for giving up parts of their assignments.

Finally, the separably concave mechanisms contribute to a recent literature that extends Spru-
mont’s uniform rule to allocation problems involving multiple resources. Preferences here are 
also assumed to be multidimensional single-peaked.5 The extension of the uniform rule pro-
posed by this literature is the only strategy-proof mechanism satisfying a weak efficiency notion 
and no-envy (Amóros, 2002; Adachi, 2010). Weakening efficiency to unanimity and specifying 
that agents with the same preferences receive welfare-equivalent assignments essentially singles 
out this extension of the uniform rule among all strategy-proof mechanisms (Morimoto et al., 
2013). In fact, this extension of the uniform rule is a mechanism in our proposed class (Sec-
tion 6). A systematic study of the joint consequences of strategy-proofness, a weak efficiency 
notion, and no-envy in broader preference domains is available (Cho and Thomson, 2012); these 
results establish that the domain of multidimensional single-peaked preferences is “maximal” for 
the existence of non-trivial strategy-proof and envy-free mechanisms.

3. Model

Agents drawn from a finite set A are assigned bundles consisting of amounts of one or more 
resources. Let N denote the subsets of A. The finite set K indexes the different kinds of resources 
that may be available.

Agents may vary in their capacities to receive the resources. The maximum capacity of agent 
i ∈ A to receive resource k ∈ K is denoted by ck

i . Thus, assignments lie in Xi ≡ {xi ∈ R
K+ :

for each k ∈ K, xk
i ≤ ck

i } where xk
i denotes the kth coordinate of xi . We refer to Xi as the

assignment space of agent i.
Agents are equipped with preferences over their assignment spaces. For each agent, i ∈ A, 

a typical preference relation is denoted by Ri . As usual, Pi denotes the asymmetric part of Ri . 
The preference relation Ri is multidimensional single-peaked if it possesses a unique maxi-
mizer or peak pi in Xi and, for each pair of distinct assignments xi and yi in Xi , xi Pi yi if

for each k ∈ K , either pk
i ≥ xk

i ≥ yk
i or pk

i ≤ xk
i ≤ yk

i .

Let p(Ri) denote the maximizer of Ri over Xi and let pk(Ri) denote its kth coordinate. Let Ri

denote the class of multidimensional single-peaked preferences defined over Xi . For each group 
of agents N ∈ N , let RN denote the class of profiles R ≡ (Ri)i∈N such that, for each i ∈ N , 
Ri ∈ Ri . Let p(R) denote the profile (p(Ri))i∈N .

The range of amounts that can be distributed among a group of agents N ∈N is M(N) ≡ {m ∈
R

K+ : for each k ∈ K, mk ≤ ∑
i∈N ck

i } where mk denotes the kth coordinate of m. For each m ∈
M(N), a feasible allocation specifies assignments for each agent in N such that all resources 
are fully allocated, i.e., the sum of the assignments adds up to m. Let Z(N, m) denote the set of 
feasible allocations of m among N .

An economy involving the agents in N ∈ N is the pair (R,m) consisting of the preference 
profile R ∈ RN and the resource profile m ∈ M(N). Let EN denote the collection of economies 
involving N .

5 Barberà et al. (1993) studied social choice in the domain of multidimensional single-peaked domain, only considering 
strict preferences. We do not exclude indifferences.
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4. Allocation mechanisms and their properties

A mechanism is a mapping ϕ that recommends, for each economy (R, m), a unique feasi-
ble allocation denoted by ϕ(R, m). We now introduce the strategic and normative properties of 
mechanisms. Unless otherwise specified, we state definitions with respect to a generic group of 
agents N ∈ N and a generic mechanism ϕ.

We start by recalling the classical efficiency notion. An allocation x ∈ Z(N, m) is Pareto 
efficient at (R, m) ∈ EN if there is no y ∈ Z(N, m) such that, for each i ∈ N , yi Ri xi and, 
for at least one i ∈ N , yi Pi xi . For each (R, m) ∈ EN , let P(R, m) denote the set of efficient 
allocations.

Efficiency: For each (R, m) ∈ EN , ϕ(R, m) ∈ P(R, m).

A minimal efficiency requirement is that the unanimously best allocation is chosen whenever 
feasible.

Unanimity: For each (R, m) ∈ EN such that p(R) ∈ Z(N, m), ϕ(R, m) = p(R).

We turn to strategic issues. As discussed before, strategy-proofness is the most compelling 
incentive compatibility criterion.

Strategy-proofness: For each (R, m) ∈ EN , each i ∈ N , and each R′
i ∈ Ri , ϕi(R, m) Ri

ϕi(R
′
i , R−i , m).

Beyond its implementation appeal, strategy-proofness has been advocated on fairness 
grounds. If a mechanism is not strategy-proof, strategic agents can manipulate at the expense 
of non-strategic agents (Pathak and Sönmez, 2008).

We move on to consistency, a principle introduced in Nash-bargaining by Harsanyi (1959).6

Harsanyi argued that if an allocation is viewed as a desirable compromise among a group of 
agents, then it should not be the case that upon receiving their assignments, two agents pooling 
their resources will arrive at a different compromise. This idea has been key in the analysis of a 
wide range of allocation problems.

Consistency: For each pair N, N ′ ∈N such that N ′ ⊆ N , each (R, m) ∈ EN , and each i ∈ N ′, 
ϕi((Rj )j∈N ′ , 

∑
j∈N ′ ϕj (R, m)) = ϕi(R, m).

The next property specifies that “favorable” resource changes do not harm any agent. For 
example, in classical economies with monotone preferences, resources are always scarce. Thus, 
when the endowment of resources increases, it is natural to specify that all agents should be made 
at least as well-off; this is known as “resource-monotonicity” (see Thomson, 2011b, for a survey). 
However, in economies with satiated preferences, resources are not necessarily scarce, and more 
may be harmful. Thus, we will only require that an increase in a scarce resource makes all agents 
at least as well-off provided that, after the increase, the resource is still scarce. Conversely, we 
will require that a decrease in a non-scarce resource makes all agents at least as well-off provided 
that, after the decrease, the resource is still non-scarce. The following definition will allow us to 
state this formally.

6 Harsanyi (1977, Page 196) calls the property “multilateral equilibrium”.
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Definition 1. For each (R, m) ∈ EN and each m̃ ∈ M(N), m̃ is between m and p(R) if, for each 
k ∈ K , either mk ≤ m̃k ≤ ∑

i∈N pk(Ri) or mk ≥ m̃k ≥ ∑
i∈N pk(Ri).

In the above definition, the profile of resources m̃ is closer than m to enabling the ideal alloca-
tion where each agent is assigned her ideal assignment or peak. Thus, we require that all agents 
are at least as well-off under m̃ than under m.

Resource-monotonicity: For each (R, m) ∈ EN and each m̃ ∈ M(N) between m and p(R), 
for each i ∈ N , ϕi(R, m̃) Ri ϕi(R, m).

In the special case of our model proposed by Sprumont (1991), where a single resource is to 
be allocated, resource-monotonicity coincides with the monotonicity notion proposed by Sönmez
(1994). Thomson (1994b) introduced the weaker “one-sided resource-monotonicity” requiring 
only that the variation in the availability of the resource affects all agents in the same direction 
welfare-wise. Under efficiency, these monotonicity properties coincide (Ehlers, 2002).

5. Separably concave mechanisms

We offer a full description of the class of strategy-proof, unanimous, consistent and resource-
monotonic mechanisms. As we will show, all these mechanisms maximize a separably concave 
function over a polyhedral extension of the set of efficient allocations.

To illustrate the separably concave mechanisms in the simplest setting, consider the problem 
of allocating a divisible amount of administrative work mk among a group of agents. Agents 
1, . . . , n would rather do as little of the work as possible and each can do at most ck

1, . . . , c
k
n, 

respectively. The question of how to allocate mk among 1, . . . , n has been the subject of a whole 
strand of research since it was formulated in the context of the adjudication of conflicting claims 
(O’Neill, 1982).7 Specific examples and proposed awards can be found in the Babylonian Tal-
mud. However, a systematic procedure or mechanism yielding the awards in these scriptures 
remained elusive until Aumann and Maschler (1985) succeeded in providing one. Young (1987)
then observed that the recommendations made by this mechanism can be computed as solutions 
to the following optimization problem:

max
∑n

i=1ui(zi) subject to
∑n

i=1zi = mk and 0 ≤ zi ≤ ck
i ,

where

ui(zi) ≡
{

ln zi if 0 ≤ zi ≤ ck
i

2 ,

ln(ck
i − zi) if

ck
i

2 ≤ zi ≤ ck
i .

Note that ui is concave. In fact, the central mechanisms for this problem can be described as 
solutions to optimization problems analogous to the one above: each “parametric” mechanism 
(Young, 1987) can be defined by appropriately choosing the ui functions.8 Another central al-
location mechanism in the parametric class, “constrained equal awards”, is obtained by setting 
ui(zi) = −z2

i .

7 Claims problems have several interpretations (taxation, bankruptcy, rationing, etc.) and are the most thoroughly stud-
ied problems in fair allocation. See Thomson (2003) for a survey.

8 Young (1987) considers a less general class of strictly concave functions where ui = u( · , ck
i
). Stovall (2014a, 2014b)

studies other mechanisms defined by maximizing a separably concave function.
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We have assumed that each agent prefers as small a share of the administrative work as pos-
sible. These preferences are monotone and hence single-peaked. Moreover, any division of the 
administrative workload among the agents is (Pareto) efficient with respect to these preferences. 
Thus, we could also define the mechanism rationalizing the awards in the Talmud as the solution 
to a maximization problem over the set of efficient allocations:

max
∑n

i=1ui(zi) subject to (z1, . . . , zn) ∈ P(R1, . . . ,Rn,m
k),

where K is assumed to be the singleton {k} and preferences R1, . . . , Rn are assumed to be mono-
tone.

A somewhat surprising observation is that if we were to drop the assumption that R1, . . . , Rn

are monotone preference relations – and just assume single-peakedness – we could compute the 
recommendations made by the uniform rule (Sprumont, 1991) by solving

max
∑n

i=1 − z2
i subject to (z1, . . . , zn) ∈ P(R1, . . . ,Rn,m

k). (1)

This equivalent definition can be derived from either of the following facts: Firstly, the alloca-
tion recommended by the uniform rule can be obtained by choosing the unique allocation that 
minimizes the variance among all efficient allocations (Schummer and Thomson, 1997). Sec-
ondly, the allocation recommended by the uniform rule is Lorenz dominant among all efficient 
allocations (De Frutos and Massó, 1995).

A central property of the uniform rule is its strategy-proofness (Bénassy, 1982; Sprumont, 
1991). An insight of this paper is that replacing any of the −z2

i by any strictly concave ui in 
(1) defines a strategy-proof mechanism. This observation extends to our model with multiple 
resources.

All of our mechanisms are obtained as solutions to optimization problems similar to the ones 
above. The main difference, is that when more than one resource is to be allocated, optimization 
is no longer defined over the efficient set but over a set containing it. In the single resource case, 
the two sets coincide (see Remark 2 in Appendix A).

Informally, the mechanisms introduced here are specified as follows: for each resource kind k, 
each agent i is equipped with a pair (uxd,k

i , uxs,k
i ) of strictly concave and continuous functions 

over her possible assignments of resource k. The allocation is computed as follows: in situations 
of excess demand (xd) for resource k,9 the allocation of resource k is chosen so as to maximize ∑

i u
xd,k
i while insuring no agent receives more than her preferred consumption of k. In situations 

of excess supply (xs) for resource k,10 the allocation of resource k is chosen so as to maximize ∑
i u

xs,k
i while insuring no agent receives less than her preferred consumption of k.

Formally, let U denote the profiles u ≡ {(uxd,k
i , uxs,k

i ) : i ∈ A, k ∈ K} where uxd,k
i , uxs,k

i :
[0, ck

i ] → R are strictly concave and continuous functions. A mechanism ϕ is separably concave
if there is a u ∈ U such that, for each N ∈ N , each (R, m) ∈ EN , and each k ∈ K ,

ϕk(R,m) = arg max{∑iu
xd,k
i (zi) : ∑izi = mk, z ∈ ×i[0 ,pk(Ri)]} if

∑
ip

k(Ri) ≥ mk,

ϕk(R,m) = arg max{∑iu
xs,k
i (zi) : ∑izi = mk, z ∈ ×i[pk(Ri), c

k
i ]} if

∑
ip

k(Ri) ≤ mk,

where i ∈ N and ϕk(R, m) specifies the distribution of the amount mk among the agents in N
recommended by ϕ.

9 The sum of the preferred consumptions of resource k exceeds the available amount.
10 The sum of the preferred consumptions of resource k is less than the available amount.
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Remark 1. The constraint set in the first optimization problem above is

{z ∈ ×i∈N [0,pk(Ri)] : ∑i∈Nzi = mk}.
This is a compact and convex set and 

∑
i u

xd,k
i is strictly concave and continuous. Thus, the 

optimization problem has a unique solution. Similarly, the second optimization problem above 
has a unique solution. Thus, a separably concave mechanism is well defined.

We can now state our main result.

Theorem 1. The separably concave mechanisms are the only strategy-proof, unanimous, consis-
tent, and resource-monotonic mechanisms.

All separably concave mechanisms satisfy another monotonicity property: when the supply 
of each resource increases, no agent’s assignment of any resource decreases.

Physical resource-monotonicity: For each (R, m) ∈ EN and each m̃ ∈ M(N) such that, for 
each k ∈ K , mk ≤ m̃k , no agent is assigned less of any resource at ϕ(R, m̃) than at ϕ(R, m).

This intuitive condition underlies the analytical tractability of the separably concave mecha-
nisms yet it is not intended to be normatively compelling since it has no welfare content. In the 
single resource case, the condition coincides with the monotonicity property proposed by Moulin
(1999). Furthermore, in this case and under efficiency, physical resource-monotonicity coincides 
with resource-monotonicity (Ehlers, 2002). Our final theorem establishes that every strategy-
proof, unanimous, and consistent mechanism satisfying either one of our resource-monotonicity 
properties is in the separably concave family.

Theorem 2. The separably concave mechanisms are the only strategy-proof, unanimous, consis-
tent, and physically resource-monotonic mechanisms.

6. Applications

We now illustrate the breadth and flexibility of the separably concave mechanisms to ac-
commodate individual rationality and various distributional objectives. We also derive further 
implications of our results for the single resource case.

6.1. Equity

A central equity notion in fair allocation is “no-envy” (Foley, 1967). A mechanism ϕ satisfies 
no-envy if, for each N ∈ N , each (R, m) ∈ EN , and each pair of agents i, j ∈ N , ϕi(R, m) Ri

ϕj (R, m). That is, the recommended allocations are such that each agent finds her assignment 
to be at least as desirable as that of any other agent. “Equal treatment of equals”, a weaker 
property, requires that identical agents receive identical assignments. That is, for each N ∈ N , 
each (R, m) ∈ EN , and each pair of agents i, j ∈ N such that Ri = Rj , ϕi(R, m) = ϕj (R, m). 
Note that these properties require that agents have the same assignment spaces.

There is a unique separably concave mechanism satisfying either of these properties. The 
usual definition of this mechanism (Amóros, 2002; Adachi, 2010; Morimoto et al., 2013), the
commodity-wise uniform rule, U , is as follows: for each N ∈ N , each (R, m) ∈ EN , agent 
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i ∈ N receives an amount of resource k ∈ K given by

Uk
i (R,m) =

{
min{pk(Ri), λ

k} if
∑

i∈N pk(Ri) ≥ mk,

max{pk(Ri), λ
k} if

∑
i∈N pk(Ri) ≤ mk,

where λk is the solution to 
∑

i∈N min{pk(Ri), λk} = mk if the first case above holds and is the 
solution to 

∑
i∈N max{pk(Ri), λk} = mk otherwise.

An alternative definition of the commodity-wise uniform rule, emphasizing its membership 
in the separably concave class, is as follows: it is the separably concave rule specified by u in 
U such that, for each i ∈ A, each k ∈ K , and each z ∈ [0, ck

i ], uxd,k
i (z) = u

xs,k
i (z) = −z2. The 

arguments establishing this coincidence are the same, repeated resource by resource, as those 
used to establish the coincidence of the usual definition of the uniform rule (Sprumont, 1991) 
and that in the optimization problem in (1).

When all agents share the same assignment spaces, the commodity-wise uniform rule is the 
only strategy-proof, unanimous, and “non-bossy” (Satterthwaite and Sonnenschein, 1981) mech-
anism recommending allocations satisfying equal treatment of equals (Morimoto et al., 2013). 
Non-bossiness requires that an agent is only able to alter another agent’s assignment by altering 
her own. It is straightforward to verify that consistency implies non-bossiness (see Lemma 10 in 
Appendix A). Thus, the commodity-wise uniform rule is singled out, within the separably con-
cave mechanisms, by equal treatment of equals. Since the commodity-wise uniform rule satisfies 
no-envy (Adachi, 2010), which implies equal treatment of equals, it is also the only separably 
concave mechanism satisfying no-envy.

6.2. Priorities

In many applications (Abdulkadiroğlu and Sönmez, 2003; Ergin, 2002; Kojima, 2013), agents 
have different priorities to receive the various resources. It is straightforward to construct separa-
bly concave mechanisms respecting such priorities. The simplest such mechanism is a sequential 
dictatorship discussed in the Introduction.

Suppose that we need to prioritize the agents in A, which we label {1, 2, . . . , n}, so that agent 1
has the highest priority, agent 2 has the second highest priority, and so forth. This means that, if 
agent 1 is not being assigned her ideal assignment or peak, there should be no other allocation 
improving upon her assignment. Conditional on this being achieved, if agent 2 is not being as-
signed her peak, there should be no alternative allocation improving upon her assignment, and so 
forth. Note that this mechanism is efficient. There is a u in U such that the corresponding sepa-
rably concave mechanism implements this priority scheme. For example, for each i ∈ {1, . . . , n}, 
each k ∈ K , and each z ∈ [0, ck

i ] let

u
xd,k
i (z) ≡ −iz + ln(1 + z) and u

xs,k
i (z) ≡ iz + ln(1 + z).

Suppose we are in a situation of excess demand for resource k. Then, recall that, under a 
separably concave mechanism, no agent receives more than her ideal amount of resource k. 
Conditional on this, a higher priority for resource k means being awarded more. The agent with 
the lowest i is given priority because her marginal return in the optimization problem defining 
the mechanism is greatest. Agents with higher values of i receive the resource only if the lowest 
i agent present is awarded her ideal assignment of resource k.

Suppose instead that we are in a situation of excess supply for resource k. Then, recall that, 
under a separably concave mechanism, no agent receives less than her ideal amount of resource k. 
Conditional on this, higher priority for resource k means being awarded less. The agent with the 
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lowest i is given priority because her marginal return in the optimization problem defining the 
mechanism is lowest. Agents with higher values of i receive less than their maximum capacity 
only if the lowest i agent present is awarded her ideal assignment of resource k.

6.3. Individual endowments

To discuss individual rationality and other properties specific to situations with individual 
endowments, we now account for this data. We specify that each agent i ∈ A has an endowment 
of resources ωi in her assignment space Xi . Then, for each N ∈ N , we consider the subclass of 
economies (R, m) ∈ EN such that, 

∑
N ωi = m. These are the economies where the resources to 

be allocated among the agents in N are precisely the sum of their endowments. For each N ∈N , 
let EN

ω denote this subclass of economies.
A mechanism ϕ is individually rational if, for each N ∈ N , each (R, m) ∈ EN

ω , and each 
i ∈ N , ϕi(R, m) Ri ωi . That is, we acknowledge an agent’s right to receive assignments at 
least as desirable as her endowment. Many separably concave mechanisms are individually ra-
tional. For example, the generalized commodity-wise uniform rule is the separably concave 
mechanism specified by u ∈ U such that, for each i ∈ A, each k ∈ K , and each z ∈ [0, ck

i ], 
u

xd,k
i (z) = u

xs,k
i (z) = −(z − ωk

i )
2.

The notion of fair net trades (Schmeidler and Vind, 1972) extends no-envy to situations with 
individual endowments. It requires that the way the allocation we recommend adjusts over en-
dowments satisfies no-envy. A mechanism ϕ satisfies fair net trades if, for each N ∈ N , each 
(R, m) ∈ EN

ω , and each pair of agents i, j ∈ N , ϕi(R, m) Ri (ωi + ϕj (R, m) − ωj ), where 
ϕj (R, m) − ωj is the “adjustment” of agent j over her endowment. The requirement is mute 
when these welfare comparisons are not well defined. The generalized commodity-wise uniform 
rule satisfies fair net trades.

6.4. Further results for the single resource case

Some properties of the separably concave mechanisms that hold in the single resource case 
do not hold in general. For example, all separably concave mechanisms are efficient and immune 
to coalition manipulation or “group strategy-proof”.

Formally, a mechanism ϕ is group strategy-proof if, for each N ∈ N , and each (R, m) ∈ EN , 
there are no N ′ ⊆ N and R′ ∈RN such that, for each i ∈ N \N ′, Ri = R′

i , and (i) for each i ∈ N ′, 
ϕi(R

′, m) Ri ϕi(R, m) and, (ii) for some i ∈ N ′, ϕi(R
′, m) Pi ϕi(R, m).

Proposition 1. Suppose that K is a singleton. The separably concave mechanisms are group 
strategy-proof.

If more than one resource is to be allocated (when the cardinality of K is greater than one), the 
separably concave mechanisms are not necessarily group strategy-proof. The commodity-wise 
uniform rule is not (Morimoto et al., 2013).

By Theorems 1 and 2, the separably concave mechanisms are the only strategy-proof, unan-
imous, and consistent mechanisms satisfying either of our resource-monotonicity properties. 
Moreover, these properties imply efficiency when K is a singleton.

Proposition 2. Suppose that K is a singleton. A strategy-proof, unanimous, and consistent mech-
anism is efficient.
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Therefore, we obtain the following:

Corollary 1. Suppose that K is a singleton.

(i) The separably concave mechanisms are the only strategy-proof, efficient, consistent, and 
resource-monotonic mechanisms.

(ii) The separably concave mechanisms are the only strategy-proof, efficient, consistent, and 
physically resource-monotonic mechanisms.

For the single resource case, part (ii) of Corollary 1 establishes the coincidence of the separa-
bly concave mechanisms with the “fixed-path” mechanisms of Moulin (1999). Apart from repre-
senting the class of strategy-proof, efficient, consistent, and physically resource-monotonic mech-
anisms as solutions to optimization problems, our characterization is tighter: Theorem 2 weakens 
efficiency to unanimity. Additionally, Theorem 1 replaces physical resource-monotonicity by our 
welfare-based resource-monotonicity.

An additional insight from our results is that they bridge a gap with the literature on claims 
problems discussed in the beginning of Section 5. Claims problems can be formally embedded 
as special cases of our model, where K is a singleton, preferences are monotone, and the upper 
capacity constraints are interpreted as claims. As we saw, the separably concave mechanisms 
subsume the parametric mechanisms of Young (1987), some of which date back to the Babylo-
nian Talmud (Aumann and Maschler, 1985; Young, 1987). Thus, the class of separably concave 
mechanisms can be viewed as extending and generalizing the parametric mechanisms to the re-
source allocation problems studied here.
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Appendix A

A.1. Notation and further definitions

The following notation will be used throughout the appendix. Let {Yi}i∈I denote a family 
of sets Yi indexed by I . Let Y I ≡ ×i∈I Yi . For each y ∈ Y I and each J ⊆ I , yJ denotes the 
projection of y onto YJ . If x, y ∈ R

I , then x ≥ y means that, for each i ∈ I , xi ≥ yi . For each 
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i ∈ I , ei ∈ R
I denotes the ith standard basis vector, i.e., the vector with a one in the ith coordinate 

and zeros elsewhere. Given a function f : R → [−∞, +∞], for each x ∈R, ∂+f (x) and ∂−f (x)

denote the right hand and left hand derivatives of f at x, respectively.
For each k ∈ K and each i ∈ A, let Xk

i ≡ [0, ck
i ].

For each k ∈ K and each N ∈ N , let Mk(N) ≡ [0, 
∑

i∈N ck
i ].

For each k ∈ K , each N ∈ N , and each R ∈ RN , let pk(R) ≡ (pk(Ri))i∈N .
For each k ∈ K , each N ∈ N , each r ∈ ×i∈NXk

i , and each μ ∈ Mk(N), let

Sk(r,μ) ≡ {z ∈ ×i∈NXk
i : ∑Nzi = μ,z ≤ r}.

For each u ∈ U , each N ∈ N , and each (R, m) ∈ EN , φ(R, m; u) denotes the allocation rec-
ommended by the separably concave mechanism specified by u for the economy (R, m). For 
each k ∈ K and each i ∈ N , φk

i (R, m; u) denotes the amount of resource k received by agent i
at allocation φ(R, m; u) and φk(R, m; u) denotes the profile (φk

j (R, m; u))j∈N . Likewise, given 

a mechanism ϕ, ϕk
i (R, m) specifies the amount of resource k received by agent i at allocation 

ϕ(R, m) and ϕk(R, m) denotes the profile (ϕk
j (R, m))j∈N . For each x in Z(N, m), xk

i denotes 

the amount of resource k received by agent i at allocation x and xk ≡ (xk
j )j∈N .

Non-bossiness: For each N ∈ N , each (R, m) ∈ EN , each i ∈ N , and each R′
i ∈ Ri , 

ϕi(R, m) = ϕi(R
′
i , R−i , m) implies that ϕ(R, m) = ϕ(R′

i , R−i , m).

Converse consistency: For each N ∈ N and each (R, m) ∈ EN ,

[x ∈ Z(N,m) and, for each {i, j} ⊆ N, x{i,j} = ϕ(R{i,j}, xi + xj )] ⇒ x = ϕ(R,m).

To define “separability” we introduce additional notation. For each N ∈ N and each k ∈ K , 
define the mapping ψk , specifying, for each

(pk,mk) ∈ [×i∈NXk
i ] × Mk(N),

a feasible division of mk among the agents in N ,

ψk(pk,mk) ∈ {x ∈ ×i∈NXk
i : ∑Nxi = mk}.

Let � denote the class of profiles {ψk : k ∈ K} of such mappings.

Separability: There is {ψk : k ∈ K} in � such that, for each N ∈ N , each (R, m) ∈ EN , and 
each k ∈ K , ϕk(R, m) = ψk(pk(R), mk).

Given a separable mechanism ϕ, we refer to the corresponding {ψk : k ∈ K} in � as the
decomposition of ϕ.

Lemma 1. Let ϕ denote a physically resource-monotonic and separable mechanism. Then, for 
each N ∈ N , each (R, m) ∈ EN , each m̂ ∈ M(N), and each k ∈ K ,

if m̂k ≥ mk , then ϕk(R, m̂) ≥ ϕk(R,m).

Proof. Let ϕ denote a mechanism satisfying the properties in Lemma 1. Let N ∈ N , (R, m) ∈
EN , m̂ ∈ M(N), and k ∈ K . Suppose that m̂k ≥ mk . Let m̃ ∈ M(N) be such that m̃k = m̂k and 
m̃ ≥ m. By separability, ϕk(R, m̂) = ϕk(R, m̃). By physical resource-monotonicity, ϕk(R, m̃) ≥
ϕk(R, m). Thus, ϕk(R, m̂) ≥ ϕk(R, m). �
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A.2. Properties of the separably concave mechanisms

Lemma 2. The separably concave mechanisms are strategy-proof, unanimous, consistent, phys-
ically resource-monotonic, separable, resource-monotonic, and conversely consistent.

Proof. Let u ≡ {(uk
i , v

k
i ) : i ∈ A, k ∈ K} ∈ U , N ∈ N , (R, m) ∈ EN , and x ≡ φ(R, m; u).

Strategy-proofness: Let i ∈ N and R̃ ∈ RN be such that, for each j ∈ N \ {i}, R̃j = Rj , 
and let y ≡ φ(R̃, m; u). We will prove that xi Ri yi . By multidimensional single-peakedness, 
it suffices to prove that, for each k ∈ K , either yk

i ≤ xk
i ≤ pk(Ri) or yk

i ≥ xk
i ≥ pk(Ri). Let 

k ∈ K , p ≡ pk(R), and q ≡ pk(R̃).
Case 1.

∑
N pj ≥ mk . Then, by definition, xk maximizes 

∑
N uk

j over all feasible distributions 

of mk at which each agent j receives no more than pj . If xk
i = pi there is nothing to show since, 

either yk
i ≥ xk

i = pi or yk
i ≤ xk

i = pi , as desired. Suppose instead that xk
i < pi .

Case 1.1.
∑

N qj ≤ mk . Then, by definition, yk maximizes 
∑

N vk
j over all feasible dis-

tributions of mk at which each agent j receives at least qj . Thus, for each j ∈ N \ {i}, 
yk
j ≥ qj = pj ≥ xk

j . Thus, since 
∑

j∈N xk
j = mk = ∑

j∈N yk
j , yk

i ≤ xk
i ≤ pi , as desired.

Case 1.2.
∑

N qj ≥ mk . Then, by definition, yk maximizes 
∑

N uk
j over all feasible distribu-

tions of mk at which each agent j receives no more than qj . If qi ≤ xk
i , then yk

i ≤ qi ≤ xk
i ≤ pi , 

as desired. Suppose instead qi > xk
i . Then, xk ∈ Sk(q, mk) and, by definition, yk ∈ Sk(q, mk).

We now show that yk
i = xk

i . If yk
i < xk

i , since, for each j ∈ N \ {i}, qj = pj then yk ∈
Sk(p, mk). But this contradicts xk being the maximizer of 

∑
N uk

j over Sk(p, mk). Thus, yk
i ≥ xk

i . 

If yk
i > xk

i , there is j ∈ N \ {i} such that yk
j < xk

j ≤ qj . Hence, there is ε > 0 such that 

yk + ε(ej − ei ) ∈ Sk(q, mk). Thus, a necessary condition for yk to maximize 
∑

N uk
j over 

Sk(q, mk) is that ∂+uk
j (y

k
j ) ≤ ∂−uk

i (y
k
i ), and, since uk

i and uk
j are strictly concave, we obtain 

the first and last inequalities in

∂−uk
j (x

k
j ) < ∂+uk

j (y
k
j ) ≤ ∂−uk

i (y
k
i ) < ∂+uk

i (x
k
i ).

Thus, ∂−uk
j (x

k
j ) < ∂+uk

i (x
k
i ). Since xk

i < pi and xk
j > yk

j ≥ 0, there is ε > 0 such that xk +ε(ei −
ej ) ∈ Sk(p, mk). But this contradicts xk being the maximizer of 

∑
N uk

j over Sk(p, mk). Thus, 

yk
i ≤ xk

i . Thus, in fact, yk
i = xk

i , as desired.
Case 2.

∑
N pj ≤ mk . By arguments analogous to those used for Case 1, either yk

i ≥ xk
i ≥ pi

or yk
i ≤ xk

i ≤ pi .

Unanimity: Suppose that p(R) ∈ Z(N, m). Thus, 
∑

i∈N p(Ri) = m. Thus, from the definition 
of a separably concave mechanism, for each k ∈ K and each i ∈ N , xk

i ≤ pk(Ri) and xk
i ≥

pk(Ri). Thus, for each k ∈ K and each i ∈ N , xk
i = pk(Ri). Thus, x = p(R).

Consistency: Let N ′ ∈ N denote a proper subset of N . By way of contradiction, sup-
pose that y ≡ φ(RN ′ , 

∑
N ′ xj ; u) �= xN ′ . Then, there is k ∈ K such that xk

N ′ �= yk . Suppose 
that 

∑
i∈N pk(Ri) ≥ mk . By the definition of φ( · ; u), for each i ∈ N , xk

i ≤ pk(Ri) and, 
for each i ∈ N ′, yk

i ≤ pk(Ri). Then, because the maximization problem defining yk has a 
unique solution and because xN ′ also satisfies the constraints of this maximization problem, 
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∑
i∈N ′ uk

i (x
k
i ) <

∑
i∈N ′ uk

i (y
k
i ). Note that, because 

∑
i∈N ′ xk

i = ∑
i∈N ′ yk

i , zk ≡ (yk, xk
N\N ′) ≤

pk(R) and 
∑

i∈N zk
i = mk . Thus, 

∑
i∈N uk

i (x
k
i ) <

∑
i∈N uk

i (z
k
i ). Thus, xk �= φk(R, m; u), con-

tradicting x ≡ φ(R, m; u). A symmetric argument applies if 
∑

i∈N pk(Ri) ≤ mk .

Physical resource-monotonicity: Let m̂ ∈ M(N) be such that m̂ ≥ m and x̂ ≡ φ(R, m̂; u). We 
need to show that x̂ ≥ x. By way of contradiction, suppose that there are i ∈ N and k ∈ K such 
that xk

i > x̂k
i . By the definition of φ( · ; u), if mk = m̂k , xk = x̂k . Thus, 

∑
h∈N x̂k

h = m̂k > mk =∑
h∈N xk

h . Thus, there is j ∈ N such that x̂k
j > xk

j . Suppose that 
∑

h∈N pk(Rh) ≥ mk . Thus, by 

the definition of φ( · ; u), for each h ∈ N , xk
h ≤ pk(Rh). If m̂k ≥ ∑

h∈N pk(Rh), then, by the 
definition of φ( · ; u), for each h ∈ N , x̂k

h ≥ pk(Rh) ≥ xk
h . Thus, in the case under consideration, ∑

h∈N pk(Rh) > m̂k > mk . Then, by the definition of φ( · ; u), xk and x̂k maximize 
∑

h∈N uk
h

over Sk(pk(R), mk) and Sk(pk(R), m̂k), respectively. Since x̂k
j > xk

j ≥ 0 and x̂k
i < xk

i ≤ pk(Ri), 

there is ε > 0 such that x̂k + ε(ei − ej ) ∈ Sk(pk(R), m̂k). Thus, a necessary condition for x̂k to 
maximize 

∑
h∈N uk

h over Sk(pk(R), m̂k) is that ∂+uk
i (x̂

k
i ) ≤ ∂−uk

j (x̂
k
j ). Moreover, since uk

i and 

uk
j are strictly concave, we obtain the first and last inequalities in

∂+uk
j (x

k
j ) > ∂−uk

j (x̂
k
j ) ≥ ∂+uk

i (x̂
k
i ) > ∂−uk

i (x
k
i ).

Thus, ∂+uk
j (x

k
j ) > ∂−uk

i (x
k
i ). Since xk

i > x̂k
i ≥ 0 and xk

j < x̂k
j ≤ pk(Rj ), there is ε > 0 such that 

xk + ε(ej − ei ) ∈ Sk(pk(R), mk). Thus, xk does not maximize 
∑

h∈N uk
j over Sk(pk(R), mk). 

This contradiction establishes that, in fact, x̂ ≥ x.
If 

∑
h∈N pk(Rh) ≤ mk , then arguments analogous to those above again establish that x̂ ≥ x.

Separability: This is clear from the definition of a separably concave mechanism.

Resource-monotonicity: Let m̃ ∈ M(N) be between m and p(R). Thus, by Lemma 1 and the 
definition of φ( · ; u), for each k ∈ K ,

pk(R) ≤ φk(R, m̃;u) ≤ φk(R,m;u) or pk(R) ≥ φk(R, m̃;u) ≥ φk(R,m;u).

By multidimensional single-peakedness, for each i ∈ N , φi(R, m̃; u) Ri xi .

Converse consistency: Let z ∈ Z(N, m) be such that, for each {i, j} ⊆ N , z{i,j} = φ(Ri, Rj ,

zi + zj ; u). Since the separably concave mechanisms are consistent, for each {i, j} ⊆ N , x{i,j} =
φ(Ri, Rj , xi + xj ; u). By way of contradiction, if φ( · ; u) is not conversely consistent, there 
is {i, j} ⊆ N such that z{i,j} �= x{i,j}. By the consistency of φ( · ; u), zi + zj �= xi + xj . Then, 
without loss of generality, there is k ∈ K such that zk

i + zk
j > xk

i + xk
j . By Lemma 1,

zk
{i,j} = φk(Ri,Rj , zi + zj ;u) ≥ φk(Ri,Rj , xi + xj ;u) = xk

{i,j}

and, without loss of generality, zk
i > xk

i . Thus, since 
∑

h∈N xk
h = mk = ∑

h∈N zk
h, there is l ∈

N \ {i, j} such that zk
l < xk

l . By the consistency of φ( · ; u), x{i,l} = φ(Ri, Rl, xi + xl; u) and, by 
assumption, z{i,l} = φ(Ri, Rl, zi +zl; u). By Lemma 1, if zk

i +zk
l ≥ xk

i +xk
l , then zk

l ≥ xk
l , which 

is not the case. Thus, zk
i + zk

l < xk
i + xk

l . Thus, by Lemma 1, zk{i,l} ≤ xk{i,l}, contradicting zk
i > xk

i . 
Thus, φ( · ; u) is conversely consistent. �
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A.3. Proof of theorems

The first step in the proofs is showing that some of the properties of mechanisms discussed 
thus far imply the following condition:

Same-sidedness: For each N ∈N , each (R, m) ∈ EN , and each k ∈ K ,∑
i∈N pk(Ri) ≤ mk implies ϕk(R, m) ≥ pk(R) and∑
i∈N pk(Ri) ≥ mk implies ϕk(R, m) ≤ pk(R).

Lemma 3. A strategy-proof, unanimous, and non-bossy mechanism is same-sided.

The proof of Lemma 3 is almost identical to that of Lemma 1 in Morimoto et al. (2013). (For 
completeness, the proof is included in a supplementary note.) We now prove that some properties 
of mechanisms discussed thus far imply a useful informational simplicity condition:

Peaks-only: For each N ∈ N , each (R, m) ∈ EN , and each R′ ∈ RN , p(R′) = p(R) implies 
ϕ(R, m) = ϕ(R′, m).

Lemma 4. A strategy-proof, same-sided, non-bossy, and resource-monotonic mechanism is 
peaks-only.

Proof. Let ϕ denote a mechanism satisfying the properties in Lemma 4. Let N ∈ N . For each 
(R, m) ∈ EN , let

K(R,m) ≡ {k ∈ K : mk �= ∑
i∈Npk(Ri),m

k �= 0,mk �= ∑
i∈Nck

i }.
The proof of Lemma 4 is by induction on the cardinality of K(R, m). Claim 1 below establishes 
the induction basis and Claim 2 below establishes the inductive step.

Claim 1. Let (R, m) ∈ EN be such that K(R, m) is empty and thus has a cardinality of zero. 
Then, for each R̃ ∈ RN such that p(R) = p(R̃), ϕ(R, m) = ϕ(R̃, m).

Let (R, m) ∈ EN be such that K(R, m) is empty and let R̃ ∈ RN be such that p(R) = p(R̃). 
Let x ≡ ϕ(R, m) and y ≡ ϕ(R̃, m). We need to prove that x = y.

Because p(R) = p(R̃), K(R̃, m) is also empty. Thus, for each k ∈ K , at least one of the below 
cases is true:

(i) mk = ∑
i∈N pk(Ri) = ∑

i∈N pk(R̃i). By same-sidedness, xk = pk(R) and yk = pk(R̃). 
However, pk(R) = pk(R̃). Thus, xk = yk .

(ii) mk = 0. By feasibility, for each i ∈ N , xk
i = 0 = yk

i .
(iii) mk = ∑

i∈N ck
i . By feasibility, for each i ∈ N , xk

i = ck
i = yk

i .

Thus, x = y.

Claim 2. Let n ∈ {0, 1, . . . , |K| − 1}.
Suppose that, for each (R, m) ∈ EN , |K(R, m)| ≤ n implies that, for each R̃ ∈ RN with 

p(R̃) = p(R), ϕ(R, m) = ϕ(R̃, m).
Then, for each (R, m) ∈ EN , |K(R, m)| = n + 1 implies that, for each R̃ ∈ RN with p(R̃) =

p(R), ϕ(R, m) = ϕ(R̃, m).
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Let (R, m) ∈ EN be such that |K(R, m)| = n + 1, let k ∈ K(R, m), and let p ≡ p(R). Let 
w ∈ M(N) be such that wk = ∑

i∈N pk
i and, for each l ∈ K \ {k}, wl = ml . Let x ≡ ϕ(R, w).

Then, for each R′ ∈ RN such that p(R′) = p, K(R, w) and K(R′, w) coincide and have 
cardinality n. Thus, by the inductive assumption,

for each R′ ∈ RN such that p(R′) = p, ϕ(R′,w) = x. (2)

Thus, since w is between m and p, by resource-monotonicity,

for each R′ ∈ RN such that p(R′) = p and each i ∈ N, xi R′
i ϕi(R

′,m). (3)

Next, we prove that,

for each R′ ∈ RN such that p(R′) = p and each l ∈ K \ {k}, ϕl(R′,m) = xl. (4)

Let R′ ∈RN be such that p(R′) = p and y ≡ ϕ(R′, m). To establish (4), we first prove that,

for each l ∈ K \ {k}, (i) if ml ≤ ∑
h∈Npl

h, for each i ∈ N, yl
i ≤ xl

i ≤ pl
i;

(ii) if ml >
∑

h∈Npl
h, for each i ∈ N, yl

i ≥ xl
i ≥ pl

i . (5)

By way of contradiction suppose that there is l ∈ K \ {k} such that (5) fails. Then, without loss 
of generality, suppose that (i) in (5) fails. By same-sidedness, for each i ∈ N , yl

i , x
l
i ≤ pl

i . Thus, 
there is i ∈ N such that

xl
i < yl

i ≤ pl
i . (6)

Let R̂i ∈Ri denote a preference relation with the following utility representation:

for each χi ∈ Xi, Ui(χi) ≡ −∑
h∈Kah

i (χh
i − ph

i )2

where each ah
i is a strictly positive number and note that p(R̂i) = pi ; moreover, by (6), al

i can be 
chosen so that yi P̂i xi . On the other hand, by (3), since p(R̂i, R′−i ) = p, xi R̂i ϕi(R̂i , R′−i , m). 

Thus, yi P̂i xi R̂i ϕi(R̂i , R′−i , m). Thus, yi P̂i ϕi(R̂i , R′−i , m) and, since yi = ϕi(R
′, m),

ϕi(R
′,m) P̂i ϕi(R̂i ,R

′−i ,m)

violating strategy-proofness. This contradiction establishes (5).
In case (i) in (5), since 

∑
i∈N yl

i = ml = wl = ∑
i∈N xl

i and, for each i ∈ N , yl
i ≤ xl

i , in fact, 
xl
i = yl

i . In case (ii) in (5), since ml = wl and, for each i ∈ N , yl
i ≥ xl

i , in fact, xl
i = yl

i . This 
establishes (4).

To conclude the proof, let R̃ ∈ RN be such that p(R̃) = p. First, suppose that mk ≤ ∑
i∈N pk

i . 
Label N so that N = {1, . . . , h}. Since p(R) = p(R̃1, RN\{1}), by (4),

for each l ∈ K \ {k}, ϕl(R,m) = xl = ϕl(R̃1,RN\{1},m). (7)

By strategy-proofness,

ϕ1(R,m) R1 ϕ1(R̃1,RN\{1},m) and ϕ1(R̃1,RN\{1},m) R̃1 ϕ1(R,m).

By same-sidedness and (7), these expressions imply ϕk
1(R, m) ≥ ϕk

1(R̃1, RN\{1}, m) and 
ϕk

1(R, m) ≤ ϕk
1(R̃1, RN\{1}, m), respectively. Thus, ϕk

1(R, m) = ϕk
1(R̃1, RN\{1}, m). Thus, by (7), 

ϕ1(R, m) = ϕ1(R̃1, RN\{1}, m). By non-bossiness, ϕ(R, m) = ϕ(R̃1, RN\{1}, m). Repeating these 
arguments h − 1 more times we find that



A. Erlanson, K. Flores-Szwagrzak / Journal of Economic Theory 159 (2015) 137–162 153
ϕ(R,m) = ϕ(R̃1,RN\{1},m) = ϕ(R̃1, R̃2,RN\{1,2},m) = · · · = ϕ(R̃,m).

An analogous proof establishes the same conclusion when mk ≥ ∑
i∈N pk

i . �
Lemma 5. A strategy-proof, same-sided, resource-monotonic, and peaks-only mechanism satis-
fies physical resource-monotonicity.

Proof. Let ϕ denote a mechanism satisfying the properties in Lemma 5 and let N ∈ N . We first 
prove the following statement:

for each k ∈ K , each (R,m) ∈ EN , and each m̃ ∈ M(N) such that,

mk ≤ m̃k and, for each l ∈ K \ {k}, m̃l = ml, ϕ(R,m) ≤ ϕ(R, m̃). (8)

Let k ∈ K , (R, m) ∈ EN , and m̃ ∈ M(N) be as specified in (8). Let p ≡ p(R), x ≡ ϕ(R, m), 
and y ≡ ϕ(R, m̃). There are three possible cases:

Case 1. mk ≤ m̃k ≤ ∑
i∈N pk

i . By peaks-only,

for each R̃ ∈RN such that p(R̃) = p, ϕ(R̃,m) = x and ϕ(R̃, m̃) = y.

Thus, since m̃ is between m and p, by resource-monotonicity,

for each R̃ ∈RN such that p(R̃) = p, for each i ∈ N, yi R̃i xi . (9)

We now prove that

for each l ∈ K \ {k}, yl = xl. (10)

Otherwise there are l ∈ K \{k} and i ∈ N such that yl
i < xl

i because ml = m̃l . By same-sidedness, 
yl
i < xl

i ≤ pl
i . Let R̂i ∈Ri denote a preference relation with the following utility representation:

for each χi ∈ Xi, Ui(χi) ≡ −∑
h∈Kah

i (χh
i − ph

i )2

where each ah
i is a strictly positive number and note that p(R̂i) = pi ; moreover, since yl

i < xl
i ≤

pl
i , a

l
i can be chosen so that xi P̂i yi . Note that p(R̂i, R−i ) = p and, thus, by (9), yi R̂i xi . This 

contradiction establishes (10).
It remains to prove that xk ≤ yk . Otherwise, because mk ≤ m̃k , there is i ∈ N such 

that yk
i < xk

i . By same-sidedness, yk
i < xk

i ≤ pk
i . Thus, by (10) and multidimensional single-

peakedness, xi Pi yi . This contradicts resource-monotonicity and thus xk ≤ yk . Thus, by (10), 
x ≤ y.

Case 2. 
∑

i∈N pk
i ≤ mk ≤ m̃k . Note that m is between m̃ and p so resource-monotonicity ap-

plies. The proof that x ≤ y is thus analogous to that in Case 1.

Case 3. mk ≤ ∑
i∈N pk

i ≤ m̃k . Let m̂ ∈ M(N) be such that, for each l ∈ K \ {k}, m̃l = ml , 
and m̂k = ∑

i∈N pk
i . By Case 1, x ≤ ϕ(R, m̂). By Case 2, ϕ(R, m̂) ≤ y. Altogether, x ≤ y. This 

concludes the proof of (8).

To establish that ϕ is physically resource-monotonic we repeatedly apply (8). Let (R, m) ∈ EN

and m̃ ∈ M(N) be such that m̃ ≥ m.
Label K so that K = {1, . . . , |K|}. For each k ∈ K , let mk ∈ M(N) be such that,
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ml
k =

{
m̃l if l ≤ k,

ml if l > k.

Then, since m̃ ≥ m, m̃ = m|K| ≥ m|K|−1 ≥ · · · ≥ m1 ≥ m. Then, by (8),

ϕ(R, m̃) = ϕ(R,m|K|) ≥ ϕ(R,m|K|−1) ≥ · · · ≥ ϕ(R,m1) ≥ ϕ(R,m). �
Lemma 6. Let ϕ denote a strategy-proof, same-sided, and non-bossy mechanism satisfying 
physical resource-monotonicity. For each k ∈ K and each pair (R, m), (R̃, m̃) in EN such that 
pk(R) = pk(R̃) and mk = m̃k , ϕk(R, m) = ϕk(R̃, m̃).

Proof. Let ϕ denote a mechanism satisfying the properties in Lemma 6. Let k ∈ K and let 
(R, m), (R̃, m̃) ∈ EN be such that pk(R) = pk(R̃) and mk = m̃k . Let x ≡ ϕ(R, m) and y ≡
ϕ(R̃, m̃). We will prove that xk = yk .

Let w ∈ M(N) be such that wk = mk and, for each l ∈ K \ {k}, wl = 0. Let a ≡ ϕ(R, w) and 
b ≡ ϕ(R̃, w). Since w ≤ m and w ≤ m̃, by physical resource-monotonicity, a ≤ x and b ≤ y. 
Thus, since 

∑
i∈N ak

i = mk = ∑
i∈N bk

i ,

ak = xk and bk = yk. (11)

Thus, it suffices to show that ak = bk . Note that, by feasibility,

for each R̂ ∈ RN , each l ∈ K \ {k}, and each i ∈ N, ϕl
i (R̂,w) = 0. (12)

Suppose that mk ≤ ∑
i∈N pk(Ri). Label N so that N = {1, . . . , n}. Thus, by strategy-proofness, 

ϕ1(R, w) R1 ϕ1(R̃1, RN\{1}, w) and ϕ1(R̃1, RN\{1}, w) R̃1 ϕ1(R, w). By same-sidedness and 
(12), the first expression implies ϕk

1(R, w) ≥ ϕk
1(R̃1, RN\{1}, w), whereas the second expression 

implies ϕk
1(R, w) ≤ ϕk

1(R̃1, RN\{1}, w). Thus, ϕk
1(R, w) = ϕk

1(R̃1, RN\{1}, w). Thus, by (12), 
ϕ1(R, w) = ϕ1(R̃1, RN\{1}, w). By non-bossiness, ϕ(R, w) = ϕ(R̃1, RN\{1}, w). Repeating these 
arguments n − 1 more times we find that

a = ϕ(R,w) = ϕ(R̃1,RN\{1},w) = ϕ(R̃1, R̃2,RN\{1,2},w) = · · · = ϕ(R̃,w) = b.

An analogous proof establishes the same conclusion when mk ≥ ∑
i∈N pk(Ri). �

Next, we use Lemma 6 to “decompose” our multidimensional allocation problem into |K|
uni-dimensional allocation problems. The result is reminiscent of the decomposition of strategy-
proof social choice functions into “marginal” strategy-proof social choice functions in problems 
where preferences have some degree of separability over a set of alternatives with a product 
structure (Barberà et al., 1993; Le Breton and Sen, 1999).

Lemma 7. Let ϕ denote a mechanism satisfying strategy-proofness, same-sidedness, non-
bossiness, and physical resource-monotonicity. Then, ϕ is separable.

Proof. This follows immediately from Lemma 6. �
Lemma 8. Let ϕ denote a physically resource-monotonic and separable mechanism. Then, for 
each N ∈ N and each R ∈RN , ϕ(R, · ) is continuous.
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Proof. Let ϕ denote a mechanism satisfying the properties in Lemma 8. By separability, ϕ has 
a decomposition {ψk : k ∈ K} in � . Let N ∈ N , and (R, m) ∈ EN . Let k ∈ K and note that it 
suffices to prove that ψk(pk(R), · ) is continuous.

Let {μn}n∈N denote a sequence in Mk(N) converging to mk and, for each n ∈ N, let x(n) ≡
ψk(pk(R), μn). We now prove that {x(n)}n∈N has a limit x and that x = y ≡ ψk(pk(R), mk)

which will establish the desired conclusion. By the Cauchy convergence criterion, if {x(n)}n∈N
does not have a limit, there is an ε > 0 such that, for each natural number ν, there are natural 
numbers h, l ≥ ν for which ‖x(l) − x(h)‖ ≥ ε. Note that this requires that μl �= μh for oth-
erwise, by definition, x(l) = x(h). Without loss of generality, suppose that μh > μl . Then, by 
Lemma 1, x(h) ≥ x(l). However, since {μn}n∈N converges, ν can be chosen sufficiently large 
so that μh − μl < ε. Clearly, this is incompatible with x(h) ≥ x(l) and ‖x(l) − x(h)‖ ≥ ε, 
a contradiction. Thus, {x(n)}n∈N has a limit which we denote by x. Since {μn}n∈N converges 
to mk and x(n) ≡ ψk(pk(R), μn), {∑i∈N xi(n)}n∈N converges to mk . Thus, since {x(n)}n∈N
converges to x, 

∑
i∈N xi = mk . By way of contradiction, suppose that x �= y. Then, since ∑

i∈N xi = mk = ∑
i∈N yi , there is a pair i, j ∈ N such that xi > yi and xj < yj . Then, since 

{x(n)}n∈N converges to x, there is a sufficiently large n ∈N such that xi(n) > yi and xj (n) < yj . 
If μn ≥ mk , by Lemma 1, x(n) ≡ ψk(pk(R), μn) ≥ ψk(pk(R), mk) ≡ y, a contradiction. If 
μn < mk , by Lemma 1, x(n) ≡ ψk(pk(R), μn) ≤ ψk(pk(R), mk) ≡ y, a contradiction again. 
Thus, x = y. �
Lemma 9. Let ϕ denote a mechanism satisfying physically resource-monotonicity and separa-
bility. If {ψk : k ∈ K} in � denotes the decomposition of ϕ, then, for each k ∈ K , ψk satisfies the 
following properties:

(i) For each i ∈ A, there is a function uxd,k
i : Xk

i → R that is strictly concave, continuous, and 
such that, for each mk ∈ Mk(A),

ψk((ck
i )i∈A,mk) = arg max

{∑
i∈Au

xd,k
i (zi) : ∑i∈Azi = mk, z ∈ ×i∈AXk

i

}
.

(ii) For each i ∈ A, there is a function uxs,k
i : Xk

i → R that is strictly concave, continuous, and 
such that, for each mk ∈ Mk(A),

ψk((0)i∈A,mk) = arg max
{∑

i∈Au
xs,k
i (zi) : ∑i∈Azi = mk, z ∈ ×i∈AXk

i

}
.

Proof. Let ϕ denote a mechanism satisfying the properties in Lemma 9. Let {ψk : k ∈ K} in �
denote the decomposition of ϕ. We prove statement (i) in the lemma. The proof of statement 
(ii) is symmetric. Let k ∈ K , c ≡ (ck

i )i∈A, C ≡ ∑
i∈A ck

i , and X ≡ ×i∈AXk
i . Without loss of 

generality, we can assume that, for each i ∈ A, the interior of Xk
i relative to R is non-empty.11

Step 1. Constructing a continuous monotone path g : [0, C] → X.

For each m ∈ [0, C], let g(m) ≡ ψk(c, m). By Lemma 1, for each pair m, m′ ∈ [0, C], m′ ≥ m

implies

11 Otherwise we could replace A by Ak ≡ {i ∈ A : ck
i

�= 0} in all the arguments in the proof and attribute, to each 
i ∈ A \ Ak any finite function uxd,k with domain Xk = {0}.
i i
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g(m′) = ψk(c,m′) ≥ ψk(c,m) = g(m).

Thus, for each i ∈ A, gi is non-decreasing in m. By feasibility, for each i ∈ A, gi(0) = 0 and 
gi(C) = ck

i . Moreover, by Lemma 8, g is continuous on [0, C].

Step 2. Constructing (uxd,k
i )i∈A from the monotone path g.

For each i ∈ A, let hi : Xk
i → [0, C] denote a strictly increasing function such that,

for each m ∈ [0,C],
if xi ∈ (0, ck

i ), xi = gi(m) if and only if lim
z↑xi

hi(z) ≤ m ≤ lim
z↓xi

hi(z),

0 = gi(m) if and only if 0 ≤ m ≤ lim
z↓0

hi(z), and

ck
i = gi(m) if and only if lim

z↑ck
i

hi(z) ≤ m ≤ C. (13)

By Theorem 6.9 in Rudin (1976), hi is Riemann-integrable on Xk
i = [0, ck

i ] and on any sub-
interval. For each xi ∈ Xk

i = [0, ck
i ], let fi(xi) denote the Riemann integral 

∫ xi

0 hi(t)dt . Note 
that fi : Xk

i → R thus defined is continuous on Xk
i since, by the properties of the Riemann in-

tegral (see Theorem 6.12 in Rudin, 1976) and the fact that hi ≤ C, for each pair α, β ∈ Xk
i , 

|fi(β) − fi(α)| = | ∫ β

α
hi(t)dt | ≤ |β − α|C. Additionally, because hi is strictly increasing, fi is 

strictly convex. For each i ∈ A, let uxd,k
i ≡ −fi . Hence, each uxd,k

i : Xk
i → R is strictly concave 

and continuous.

Step 3. Verifying that (uxd,k
i )i∈A is as claimed in (i) of Lemma 9.

For each i ∈ A, let fi ≡ −u
xd,k
i . It suffices to establish that, for each m ∈ [0, C],

g(m) = arg min
{∑

Afi(zi) : z ∈ X,
∑

Azi = m
}
. (14)

Case 1. m = 0 or m = C. If m = 0, {z ∈ X : ∑
A zi = m} is the singleton {(0)i∈A}. If 

m = C, {z ∈ X : ∑
A zi = m} is the singleton {c}. Thus, (14) follows because g(0) = (0)i∈A

and g(C) = c.

Case 2. 0 < m < C. Let a ≡ arg min
{∑

A fi(zi) : z ∈ X,
∑

A zi = m
}
. For each i ∈ A, let Fi :

R → [−∞, +∞] be the function such that, for each xi ∈ Xk
i , Fi(xi) = fi(xi) and, for each 

xi /∈ Xk
i , Fi(xi) = ∞. Note that, under the standard convention that the convex combination of a 

finite number and ∞ is itself ∞, Fi is convex, closed, and proper. Moreover,

a = arg min
{∑

AFi(zi) : ∑Azi = m
}
.

Clearly, there is x in the relative interior of X such that 
∑

A xi = m and 
∑

A Fi(xi) =∑
A fi(xi) �= −∞. Thus, by Corollary 28.2.2 in Rockafellar (1970), there is a Kuhn–Tucker co-

efficient λ∗ ∈ R for the optimization problem min
{∑

A Fi(zi) : ∑A zi = m
}
. For each (x, λ) ∈

R
A ×R, let L(x, λ) ≡ ∑

Fi(xi) + λ[m − ∑
xi]. By Theorem 28.3 in Rockafellar (1970),
A A
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min
x∈RA

L(x,λ∗) = λ∗m +
∑
i∈A

min
{
Fi(xi) − λ∗xi : xi ∈R

}
= λ∗m +

∑
i∈A

{Fi(ai) − λ∗ai}.

Thus, for each i ∈ A and each xi ∈R,

Fi(xi) ≥ Fi(ai) + λ∗(xi − ai).

Thus, λ∗ is in the sub-differential of Fi at ai . That is, for each i ∈ A, λ∗ ∈ ∂Fi(ai). By the 
definition of fi in Step 2, the definition of Fi , and Theorem 24.2 in Rockafellar (1970),

for each i ∈ A, (i) if ai ∈ (0, ck
i ), ∂Fi(ai) = [limz↑ai

hi(z), limz↓ai
hi(z)],

(ii) if ai = 0 ∂Fi(ai) = (−∞, limz↓ai
hi(z)

]
,

(iii) if ai = ck
i , ∂Fi(ai) = [

limz↑ai
hi(z),∞

)
.

Moreover, since 0 < m < C, there are i, j ∈ A such that 0 < aj and ai < ck
i . Thus, since hj is 

strictly increasing, 0 ≤ hj (0) < limz↑aj
hj (z). Thus, by (i) and (iii), 0 < λ∗. Similarly, since hi is 

strictly increasing, limz↓ai
hi(z) < hi(c

k
i ) ≤ C. Thus, by (i) and (ii), λ∗ < C. Thus, 0 < λ∗ < C. 

Thus,

for each i ∈ A, by (i), if ai ∈ (0, ck
i ), λ∗ ∈ [limz↑ai

hi(z), limz↓ai
hi(z)],

by (ii), if ai = 0, λ∗ ∈ (
0, limz↓ai

hi(z)
]
,

by (iii), if ai = ck
i , λ∗ ∈ [

limz↑ai
hi(z),C

)
.

Thus, by (13), for each i ∈ A, gi(λ
∗) = ai . Thus, m = ∑

A ai = ∑
A gi(λ

∗) = λ∗. Thus, m = λ∗
and g(m) = a, confirming (14). �
Lemma 10. A consistent mechanism is non-bossy.

Proof. Let ϕ denote a consistent mechanism. Let N ∈ N , (R, m) ∈ EN , and i ∈ N . Let 
R′ ∈ RN be such that, for each j ∈ N \ {i}, R′

j = Rj . Let x ≡ ϕ(R, m) and x′ ≡ ϕ(R′, m). 
Suppose, as in the hypothesis of non-bossiness, that x′

i = xi . Then, 
∑

N\{i} x′
j = ∑

N\{i} xj . 
Thus, (R′

N\{i}, 
∑

N\{i} x′
j ) = (RN\{i}, 

∑
N\{i} xj ). Thus, by consistency, for each j ∈ N \ {i}, 

x′
j = ϕj (RN\{i}, 

∑
N\{i} xj ) = xj . Thus, x′ = x. �

Lemma 11. Let ϕ denote a mechanism satisfying strategy-proofness, consistency, physical 
resource-monotonicity, and same-sidedness.

Then, there is u in U such that, for each N ∈ N consisting of two agents and each 
(R,m) ∈ EN , ϕ(R, m) = φ(R, m; u).

Proof. Let ϕ denote a mechanism satisfying the properties in Lemma 11. By Lemma 10, ϕ is 
non-bossy. Thus, by Lemma 7, ϕ is separable. Thus, there is a decomposition {ψk : k ∈ K} in �
of ϕ. Thus, by Lemma 9, there is

u = {(uxd,k
i , u

xs,k
i ) : i ∈ A,k ∈ K} in U

such that, for each k ∈ K , each i ∈ A, and each μ ∈ Mk(A),
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(i) ψk((ck
i )i∈A, μ) = arg max{∑i∈A u

xd,k
i (zi) : ∑i∈A zi = μ, z ∈ ×i∈AXk

i }, and

(ii) ψk((0)i∈A, μ) = arg max{∑i∈A u
xs,k
i (zi) : ∑i∈A zi = μ, z ∈ ×i∈AXk

i }.

Let {i, j} ∈N and (Ri, Rj , m) ∈ E {i,j}. We prove ϕ(Ri, Rj , m) = φ(Ri, Rj , m; u). Let k ∈ K , 
ri ≡ pk(Ri), and rj ≡ pk(Rj ).

First, consider the case where ri + rj ≥ mk . Then, it suffices to prove that

ϕk(Ri,Rj ,m) = arg max{uxd,k
i (zi) + u

xd,k
j (zj ) : z ∈ Sk((ri , rj ),m

k)}
= φk(Ri,Rj ,m;u) (15)

where the notation Sk( · , mk) is defined in Section A.1. The second equality in (15) follows 
immediately from the definition of φ( · ; u). It remains to establish the first equality in (15).

Let R̄ ∈ RA be such that pk(R̄) = (ck
i )i∈A and, for each l ∈ K \ {k}, pl(R̄i) = pl(Ri) and 

pl(R̄j ) = pl(Rj ). Since, as noted above ϕ is separable, Lemma 8 implies there is m̄ ∈ M(A)

such that, ϕi(R̄, m̄) + ϕj (R̄, m̄) = m. Then,

ϕk(R̄, m̄) = ψk((ck
i )i∈A, m̄k) = φk(R̄, m̄;u)

where the first equality follows from the definition of ψk and the second equality follows from (i) 
and the definition of φ( · ; u). Thus, by the assumed consistency of ϕ and that of φ( · ; u), as 
established in Lemma 2,

ψk(ck
i , c

k
j ,m

k) = φk(R̄i , R̄j ,m;u)

= arg max{uxd,k
i (zi) + u

xd,k
j (zj ) : zi + zj = mk, zi ∈ Xk

i , zj ∈ Xk
j }.

Let x ≡ ϕ(R̄i, R̄j , m), y ≡ ϕ(Ri, Rj , m), pi ≡ pk(R̄i), and pj ≡ pk(R̄j ).

Before proceeding, note that, by the strict concavity of uxd,k
i +u

xd,k
j , for each α ∈R, U(α) ≡

{(ai, aj ) ∈ Xk
i × Xk

j : u
xd,k
i (ai) + u

xd,k
j (aj ) ≥ α} is strictly convex relative to Xk

i × Xk
j . Note 

that, since ri ≤ pi and rj ≤ pj ,

Sk((ri , rj ),m
k) ⊆ Sk((ri ,pj ),m

k) ⊆ Sk((pi,pj ),m
k).

Thus, xk ∈ Sk((ri , rj ), mk) would require φk(Ri, Rj , m; u) = xk since, for each z in Sk((ri , rj ),
mk), uxd,k

i (xk
i ) + u

xd,k
j (xk

j ) ≥ u
xd,k
i (zi) + u

xd,k
j (zj ); moreover, by the strict convexity of U(·), 

this weak inequality would be an equality only if z = xk . On the other hand, if xk is not in 
Sk((ri , rj ), mk), then, by the strict convexity of U(·), φk(Ri, Rj , m; u) is the closest point to 
xk in Sk((ri , rj ), mk). Thus, to prove the first equality in (15) we distinguish the following two 
cases:

Case 1. xk ∈ Sk((ri , rj ), mk). Let w ≡ ϕ(Ri, R̄j , m). As noted in the beginning of the proof, 
ϕ is separable. Thus, since, for each l ∈ K \ {k}, pl(R̄i) = pl(Ri) and pl(R̄j ) = pl(Rj ), wl = xl

and yl = xl . Thus, suppose that wk �= xk . If xk
i < wk

i , by same-sidedness, xk
i < wk

i ≤ pk(Ri) ≤
pk(R̄i). Then, by multidimensional single-peakedness, wi P̄i xi , contradicting the strategy-
proofness of ϕ at (R̄i , R̄j , m). If xk

i > wk
i , xk ∈ Sk((ri , rj ), mk) implies wk

i < xk
i ≤ pk(Ri). 

Then, by multidimensional single-peakedness, xi Pi wi , contradicting the strategy-proofness of 
ϕ at (Ri, R̄j , m). Thus, w = x. Using a similar argument we go from (Ri, R̄j , m) to (Ri, Rj , m), 
arriving at y = w = x. Thus, ϕk(Ri, Rj , m) = xk , as desired.
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Case 2. xk /∈ Sk((ri , rj ), mk). As explained above, we need to prove that yk is the closest 
point to xk in Sk((ri , rj ), mk). Now, xk /∈ Sk((ri , rj ), mk) implies either xk

i > ri or xk
j > rj . 

Without loss of generality, assume the former. Then, the closest point to xk in Sk((ri , rj ), mk) is 
z ∈ Sk((ri , rj ), mk) such that zi = ri and zj = mk − zi .

By way of contradiction, suppose that y �= z. Since by assumption ri + rj ≥ mk , by same-
sidedness, yk

i < ri = zi . Let R′
i ∈ Ri be such that p(R′

i ) = p(Ri) and xi P ′
i yi . Let w ≡

ϕ(R′
i , Rj , m). By Lemma 10, ϕ is non-bossy and thus, by Lemma 7, ϕ is separable. Clearly, sepa-

rability implies peaks-onliness. Thus, w = y. Note that ri + rj ≥ mk = xk
i + xk

j and pi ≥ xk
i > ri

implies rj > xk
j . Thus, xk ∈ Sk((pi, rj ), mk). Thus, by Case 1, xk = ϕk(R̄i , Rj , m). Since, as 

noted in the beginning of the proof, ϕ is separable, for each l ∈ K \{k}, xl = ϕl(R̄i , Rj , m) = wl . 
Thus,

ϕi(R̄i ,Rj ,m) = xi P ′
i wi = ϕi(R

′
i ,Rj ,m),

contradicting strategy-proofness at (R′
i , Rj , m). Thus, yk = z, establishing (15).

In the case where ri + rj ≤ mk , a symmetric argument, using (ii) above instead of (i), again 
establishes ϕk(Ri, Rj , m) = φk(Ri, Rj , m; u). �
Lemma 12. Let ϕ denote a mechanism satisfying strategy-proofness, consistency, physical 
resource-monotonicity, and same-sidedness.

Then, there is u in U such that, for each N ∈ N and each (R, m) ∈ EN , ϕ(R, m) =
φ(R, m; u).

Proof. Let ϕ denote a mechanism satisfying the properties Lemma 12. Let N ∈ N , (R, m) ∈ EN , 
and x ≡ ϕ(R, m). By the consistency of ϕ, for each {i, j} ⊆ N , x{i,j} = ϕ(Ri, Rj , xi + xj ). By 
Lemma 11, there is a u in U such that, for each {i, j} ⊆ N , ϕ(Ri, Rj , xi + xj ) = φ(Ri, Rj , xi +
xj ; u). By Lemma 2, φ( · ; u) is conversely consistent. Thus, φ(R, m; u) = x. Thus, φ(R, m; u) =
ϕ(R, m). �
Proof of Theorem 1. By Lemma 2, each separably concave mechanism is strategy-proof, unan-
imous, consistent, and resource-monotonic. Conversely, let ϕ denote a strategy-proof, unani-
mous, consistent, and resource-monotonic mechanism. By Lemma 10, ϕ is non-bossy. Thus, by 
Lemma 3, ϕ is same-sided. Thus, by Lemma 4, ϕ is peaks-only. Thus, by Lemma 5, ϕ is physi-
cally resource-monotonic. Thus, by Lemma 12, there is a u in U such that, for each N ∈ N and 
each (R, m) ∈ EN , ϕ(R, m) = φ(R, m; u). Thus, ϕ is a separably concave mechanism. �
Proof of Theorem 2. By Lemma 2, each separably concave mechanism is strategy-proof, unan-
imous, consistent, and physically resource-monotonic. Conversely, let ϕ denote a strategy-proof, 
unanimous, consistent, and physically resource-monotonic mechanism. By Lemma 10, ϕ is non-
bossy. Thus, by Lemma 3, ϕ is same-sided. Thus, by Lemma 12, there is a u in U such that, 
for each N ∈ N and each (R, m) ∈ EN , ϕ(R, m) = φ(R, m; u). Thus, ϕ is a separably concave 
mechanism. �
A.4. Results for the single resource case

We first recall useful facts (Sprumont, 1991) that help prove Proposition 2.
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Remark 2. Suppose that K is a singleton. Let N ∈N and (R, m) ∈ EN .

(i) P (R, m) is a compact and convex set.
(ii) Allocation x ∈ Z(N, m) is efficient at (R, m) ∈ EN if and only if 

∑
N p(Ri) ≥ m implies 

x ≤ p(R), and 
∑

N p(Ri) ≤ m implies x ≥ p(R).

Proof of Proposition 2. Suppose that K is a singleton. Let ϕ denote a strategy-proof, unan-
imous, and consistent mechanism. We will prove that ϕ is efficient. If ϕ is not efficient, there 
are N ∈ N and (R, m) ∈ EN such that x ≡ ϕ(R, m) is not efficient at (R, m), x /∈ P(R, m). 
Thus, by (ii) in Remark 2, there is a pair i, j ∈ N such that xi < p(Ri) and xj > p(Rj ). 
By consistency, x{i,j} = ϕ(Ri, Rj , xi + xj ). By unanimity, either xi + xj < p(Ri) + p(Rj ) or 
xi +xj > p(Ri) +p(Rj ). Without loss of generality, assume the former. Let R′

i ∈ Ri be such that 
p(R′

i ) = xi + xj − p(Rj ) > 0 and y ≡ ϕ(R′
i , Rj , xi + xj ). Since, p(R′

i ) + p(Rj ) = xi + xj , by 
unanimity, yi = p(R′

i ) and yj = p(Rj ). However, by feasibility, xi < yi < p(Ri). Thus, yi Pi xi , 
contradicting strategy-proofness at (Ri, Rj ). This contradiction establishes that ϕ is efficient. �

Finally we establish that the separably concave mechanisms are group strategy-proof when 
K is a singleton.

Proof of Proposition 1. Let N ∈ N , u ≡ {(ui, vi) : i ∈ A} ∈ U , (R, m) ∈ EN , and x ≡
φ(R, m; u). If 

∑
N p(Ri) = m, then, for each i ∈ N , xi = p(Ri) and no agent has an incentive 

to misreport her preferences. Suppose that 
∑

N p(Ri) > m.
Let M ⊆ N and (R′, m) ∈ EN be such that, for each j ∈ N \ M , R′

j = Rj . Let x′ ≡
φ(R′, m; u) and assume that

for each i ∈ M, x′
i Ri xi . (16)

We will prove that (16) implies x ′
M = xM . By Proposition 2, φ( · ; u) is efficient. Thus, by Re-

mark 2, x ≤ p(R). Because preferences are single-peaked, a necessary condition for (16) is that

for each i ∈ M, xi ≤ x′
i . (17)

Case 1.
∑

N p(R′
j ) ≤ m. By Proposition 2, φ( · ; u) is efficient. Thus, by Remark 2, for each 

j ∈ N \ M , x ′
j ≥ p(R′

j ) = p(Rj ) ≥ xj . Thus, 
∑

M xk ≥ ∑
M x′

k . But by (17), 
∑

M xk ≤ ∑
M x′

k . 
Thus, 

∑
M xk = ∑

M x′
k . Thus, by (17), for each j ∈ M , x ′

j = xj , and x′
M = xM , as desired.

Case 2.
∑

N p(R′
j ) > m and x ∈ P(R′, m). Thus, by the definition of φ( · ; u), x′ �= x re-

quires x′ ∈ P(R′, m) \ P(R, m). Then, by Remark 2, there is i ∈ N such that p(R′
i ) ≥ x′

i >

p(Ri) ≥ xi . Thus, P(R′
i , RN\{i}, m) ⊇ P(R, m) and, since RN\M = R′

N\M , i ∈ M . Addition-
ally, because preferences are single-peaked, (16) and x′

i > p(Ri) ≥ xi requires p(Ri) > xi . 
Thus, from the definition of φ( · ; u) and by Remark 2, x = φ(R′

i , RN\{i}, m; u). Thus, x ′ ∈
P(R′, m) \ P(R′

i , RN\{i}, m). Thus, there is j ∈ N \ {i} such that p(R′
j ) ≥ x′

j > p(Rj ) ≥ xj . 
Thus, P(R′

i , R
′
j , RN\{i}, m) ⊇ P(R, m) and, since RN\M = R′

N\M , j ∈ M . Additionally, because 
preferences are single-peaked, (16) and x′

j > p(Rj ) ≥ xj requires p(Rj ) > xj . Thus, from the 
definition of φ( · ; u) and by Remark 2, x = φ(R′

i , R
′
j , RN\{i,j}, m; u). Clearly, we can continue 

in this way until we exhaust M . Thus, (17) implies x = x ′, and x′
M = xM , as desired.

Case 3.
∑

N p(R′
j ) > m and x /∈ P(R′, m). Then, by Remark 2, there is i ∈ N such that 

p(Ri) ≥ xi > p(R′
i ) ≥ x′

i . Since RN\M = R′
N\M , i ∈ M . This contradicts (17). Thus, (17) implies 

x = x′, and x′ = xM , as desired.
M
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Cases 1 through 3 establish that, when 
∑

N p(Ri) ≥ m, (16) implies x′
M = xM . A symmetric 

argument yields the same conclusion when 
∑

N p(Ri) ≤ m. Clearly, these conclusions hold for 
each (R, m) ∈ EN and each group of agents M ⊆ N . Thus, φ( · ; u) is group strategy-proof. �
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