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• We analyse the set of individual rational payoffs where no agent set is overdemanded.
• We present a polynomial time method for identifying the maximal set in excess demand.
• This method can be used to find the unique minimum element in the set of interest.
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a b s t r a c t

We present a polynomial timemethod for identifying themaximal set in excess demand at a given payoff
vector. This set can be used in ‘‘large’’ partnership formation problems to identify the minimum element
in the set of individually rational payoff vectors at which there is no overdemanded set of agents. This
minimum element corresponds to the minimum Walrasian equilibrium price vector in a special case of
the partnership formation problem.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Several recent papers have investigated the partnership forma-
tion problem.1 This problem involves a set of agents who can stay
independent or form a partnership with some other agent if it is
in their mutual interest to do so. Agents that stay independent
generate a value for themselves whereas a cooperating pair must
agree upon how to split their jointly generated value. A prominent
special case of this problem is the assignment game (Shapley and
Shubik, 1971), where the agents are split into two disjoint groups
(e.g., buyers and sellers) and the roles of the agents are fixed.

In contrast to the assignment game, equilibriummay fail to ex-
ist for a partnership formation problem due to its one-sided na-
ture. A more positive result is due to Andersson et al. (2014) who
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show that the set of individually rational payoff vectors at which
there is no overdemanded set contains a unique minimum element
pmin that can be used to determine whether an equilibrium exists
or not.2 Their proof is constructive as it is based on an algorithm
for identifying pmin. Each iteration of the algorithm determines
whether there is an overdemanded set or not. If so, a minimal such
set is identified.3 However, for their algorithm to terminate, an ex-
haustive search through all subsets of agents is required which
makes the algorithm computationally infeasible for problems in-
volving many agents.

The main innovation of this note is to present a polynomial
time method for identifying a maximal set in excess demand at a
given payoff vector. By construction, this set shares an important
property with the minimal overdemanded sets examined by
Andersson et al. (2014).4 It turns out that a maximal set in excess

2 A set of agents S is overdemanded at a payoff vector if the number of agents
demanding only agents in the set S is strictly greater than the number of agents in
the set S.
3 An overdemanded set S isminimal if no proper subset of S is overdemanded.
4 The notion of a set in excess demand is weaker than the notion of a minimal

overdemanded set (Demange et al., 1986) as demonstrated by van der Laan and
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demand, therefore, can be used as a termination criterion and to
update payoffs in amodified version of the algorithm in Andersson
et al. (2014) without altering its nice convergence properties.
Furthermore, there is a unique maximal set in excess demand,
making the path – the sequence of payoff vectors traversed from
the start payoffs to pmin – unique. This is important as there are
typically billions of different paths connecting these two payoff
vectors even for ‘‘small’’ problems. An advantage is hence that
no additional selection rule is needed for determining the exact
path. In addition, we show through simulations that the algorithm
typically converges in fewer iterationswhen using themaximal set
in excess demand rather than an arbitrary set in excess demand.
In roughly 96% of the investigated instances, the algorithm
terminates weakly faster when based on the maximal set.
Moreover, it requires on average 16%–21% fewer iterations than if
the set is chosen arbitrarily among the sets in excess demand.

Related to this note, Alkan and Tuncay (2013) present a poly-
nomial time algorithm for identifying an equilibrium for the part-
nership formation problem. Their equilibrium notion is, however,
not identical to the one used by Andersson et al. (2014). Alkan and
Tuncay (2013) introduce the opportunity for agents to form half-
partnerships (i.e., agents are allowed to have two half-partners
as an alternative to having one full partner). Additionally, their
algorithm generally does not converge to pmin. Andersson et al.
(2013) and Sankaran (1994) have provided different polynomial
time methods for identifying the maximal set in excess demand
for assignment games.

This note is organized as follows. Section 2 contains the model
and some basic definitions. Section 3 describes the polynomial
time method for identifying the maximal set in excess demand.
Section 4 presents the results of the simulation study.

2. The model and basic definitions

The finite set of agents is denoted as N = {1, 2, . . . , n}. Each
i ∈ N can stay independent and generate a value of vii = 0 or form
a partnershipwith some other agent j ≠ i. In the latter case, agents
i and j generate the joint value vji = vij ∈ Z. Let v be the symmetric
n × n matrix containing vij as its (i, j)th entry. The pair (N, v) is
called a problem.5 A matching µ : N → N satisfies µ(i) = j if and
only if µ(j) = i. A payoff vector is p = (p1, p2, . . . , pn) ∈ Rn, and it
is said to be individually rational if pi ≥ 0 for all i ∈ N . Agents are
assumed to have quasilinear preferences, i.e., the demand corre-
spondence for agent i ∈ N at payoff vector p is

Di(p) = {j ∈ N : vij − pj ≥ vik − pk for all k ∈ N}.

The agents who demand only agents in S ⊆ N at p are O(S, p) =

{i ∈ N : Di(p) ⊆ S}. The set S is overdemanded at p if |O(S, p)| >
|S|. The set of individually rational payoff vectors at which there
are no overdemanded sets is given by:

H = {p ∈ Rn
: pi ≥ vii for all i ∈ N

and |O(S, p)| ≤ |S| for all S ⊆ N}.

A payoff vector pmin
∈ H is minimum if pmin

≤ p for all p ∈ H . As
shown by Andersson et al. (2014) there exists a unique minimum

Yang (2008) and Andersson et al. (2013). As also demonstrated by Andersson et al.
(2013), the iterative auction algorithm inDemange et al. (1986) always converges to
theuniqueminimumWalrasian equilibriumprice vector if it is based on an arbitrary
set in excess demand. In addition, the strategic properties of the auction algorithm
in Demange et al. (1986)will continue to hold if a set in excess demand in employed
instead of a minimal overdemanded set.
5 A special case of this model is the assignment game (Shapley and Shubik, 1971)

where the roles of the agents are given, and all agents in N are exogenously split
into two disjoint groups, N1 and N2 (with N1 ∪ N2 = N), where agents in the same
group cannot be partners. See Talman and Yang (2011).
payoff vector pmin
∈ H for each problem (N, v). For the assign-

ment game, this payoff vector corresponds to the uniqueminimum
Walrasian equilibrium price vector (Demange and Gale, 1985).

The agentswhodemand someagent in S ⊆ N at p areU(S, p) =

{i ∈ N : Di(p) ∩ S ≠ ∅}. A set S ⊆ N is in excess demand at p if, for
all non-empty T ⊆ S, the following condition is satisfied:
|U(T , p) ∩ O(S, p)| > |T |. (1)
As demonstrated by Andersson et al. (2013) and Mo et al. (1988),
there exists a unique maximal set in excess demand whenever
there exists an overdemanded set.

3. A method for identifying the unique maximal set in excess
demand

Andersson et al. (2014) demonstrate that pmin can be identified
using a simple algorithm where the payoffs in each step are
increased for agents in an arbitrary minimal overdemanded set.
Importantly, this algorithm still converges to pmin if the payoff
increases and the termination criterion instead is based on the
maximal set in excess demand, as this set by construction satisfies
a condition examined by Andersson et al. (2014, see Lemma 1). As
discussed in the Introduction, there are several benefits to making
this modification. Of vital importance for larger problems is what
is demonstrated next: the maximal set in excess demand can be
found in polynomial time.

To identify the set, we use a directed bipartite graph G con-
structed from an artificial problem (N ∪ N ′, w). Interpret each i′ ∈

N ′
= {1′, 2′, . . . , n′

} as the ‘‘clone’’ of agent i ∈ N , and let

wj′ i = wij′ =


vij if i ∈ N and j′ ∈ N ′ is the clone of j ∈ N
−1 otherwise.

With some abuse of notation, extend p such that pi′ = pi for each
clone i′ ∈ N ′ of i ∈ N . Note that Di(p) ⊆ N ′ for all i ∈ N in (N ∪N ′,
w) aswii′ = 0 > wij for all j ∈ N . In particular, j ∈ Di(p) in (N, v) if
and only if the corresponding clone j′ ∈ Di(p) in (N∪N ′, w). Hence,
a set S is in excess demand in (N, v) if and only if the corresponding
clones S ′ are in excess demand in (N ∪ N ′, w).

Amatching that satisfies demand is χ : N → N ′
∪{∅}, where, for

all i ∈ N such that χ(i) ≠ ∅, χ(i) ∈ Di(p). Let χ−1(T ′) ≡ {i ∈ N :

χ(i) ∈ T ′
} be the agents matched to the clones in T ′

⊆ N ′. Assume
throughout thatχ ismaximal in the sense thatχ−1(N ′) ⊄ χ̃−1(N ′)
for each matching that satisfies demand χ̃ . Collect the unmatched
agents in U ≡ {i ∈ N : χ(i) = ∅}.

Next, we construct the graph G = (V , E). The vertex set V is
N ∪ N ′. The edge set E contains an arc from i ∈ N to j′ ∈ N ′ when-
ever j′ ∈ Di(p) and χ(i) ≠ j′ and an arc from j′ ∈ N ′ to i ∈ N when-
ever χ(i) = j′. In G, t ∈ V is reachable from s ∈ V through vk ∈ V if
there exists a sequence (s = v0, v1, . . . , vm = t) such that vk is
adjacent to vk+1 for all k = 0, 1, . . . ,m − 1. Let
R′

≡ {j′ ∈ N ′
: j′ is reachable from some i ∈ U}.

Collect their matches in R ≡ χ−1(R′). Note that Di(p) ⊆ R′ for all
i ∈ U , hence U ⊆ O(R′, p).

We remark thatχ can be found in polynomial time, for instance
by using the techniques in Edmonds (1967). In addition, it is pos-
sible to check if t is reachable from s in polynomial time (breadth
first search or iterative deepening depth-first search algorithms).
Consequently, if the method for identifying the maximal set in ex-
cess demand is based on the notion of reachable vertices inG, it will
have polynomial time complexity. This is the case for the method
described in the following theorem. We show that R′ is the maxi-
mal set in excess demand for (N ∪ N ′, w). Hence, the maximal set
in excess demand for (N, v) is exactly the agents whose clones are
in R′.

Theorem 1. Fix a problem (N, v) and a payoff vector p. Construct R′

as described above. Then the set of agents whose clones are R′ is the
maximal set in excess demand at p whenever some set is in excess
demand.
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Table 1
Summary statistics for the simulation study.

Problem size (number of agents) 10 11 12 13 14 15

Average number of iterations MaxED_Path 7.30 9.59 9.07 11.1 10.4 12.2
Average number of iterations Random_Path 8.73 11.2 11.2 13.4 13.2 15.2

MaxED_Pathweakly faster than Random_Path (%) 96.5 95.7 95.9 95.8 96.6 96.8
MaxED_Path strictly faster than Random_Path (%) 63.5 66.6 76.1 77.4 83.9 84.5
Proof. If U = ∅, then χ(i) ∈ Di(p) for all i ∈ N . Then, for all T ′
⊆

N ′, O(T ′, p) ⊆ χ−1(T ′), as for all i ∉ χ−1(T ′), χ(i) ∈ Di(p) and
χ(i) ∉ T ′, and hence i ∉ O(T ′, p). In other words, the agents
matched to the clones T ′, χ−1(T ′), are the only ones who can de-
mand clones exclusively in T ′, as each other agent i ∉ χ−1(T ′)must
demandhermatchχ(i) ∉ T ′. Hence, |O(T ′, p)| ≤ |χ−1(T ′)| = |T ′

|.
Therefore no set is in excess demand (nor is any set overde-
manded).

Assume insteadU ≠ ∅. We first demonstrate that R ⊆ O(R′, p).
For each i ∈ R, χ(i) ∈ R′. Hence, i is reachable from some j ∈ U
through χ(i). But then each k′

∈ Di(p)\{χ(i)} is reachable by j
through i, and therefore each such k′

∈ R. Hence, Di(p) ⊆ R′ for
all i ∈ R.

Next, we show that R′ is in excess demand. Take an arbitrary
non-empty set T ′

⊆ R′ and agent i ∈ χ−1(T ′) ⊆ χ−1(R′) = R. As
just shown, i ∈ O(R′, p). Additionally, χ(i) ∈ Di(p)∩ T ′, and hence
i ∈ U(T ′, p). By inspecting two cases, we will show that there
always exists an agent m ∉ χ−1(T ′) such that condition (1) is sat-
isfied for T ′ (and hence R′ is in excess demand):

|U(T ′, p) ∩ O(R′, p)| ≥ |χ−1(T ′) ∪ {m}| = |T ′
| + 1 > |T ′

|.

Case 1: There exists i ∈ U such thatDi(p)∩T ′
≠ ∅. As noted before,

U ⊆ O(R′, p). Letm ≡ i.
Case 2: For all i ∈ U,Di(p) ∩ T ′

= ∅. As T ′ is reachable from some
i ∈ U , there exists j ∈ R such that χ(j) ∉ T ′ and Dj(p)∩ T ′

≠ ∅. Let
m ≡ j.

Finally, we demonstrate that R′ is the maximal set in excess
demand. Suppose, to obtain a contradiction, there exists S ′

⊈ R′ in
excess demand. Define T ′

≡ S ′
\R′

≠ ∅. By contradiction, suppose
there exists i ∉ χ−1(T ′) such that i ∈ U(T ′, p) ∩ O(S ′, p). As i ∈

U(T ′, p) and T ′
∩ R′

= ∅, i ∉ O(R′, p). Therefore, i ∉ U , and hence
χ(i) ≠ ∅; also, i ∉ R, so χ(i) ∉ R′. As i ∈ O(S ′, p), χ(i) ∈ S ′. But
then χ(i) ∈ S ′

\ R′
= T ′, a contradiction to i ∉ χ−1(T ′). Therefore

|U(T ′, p) ∩ O(S ′, p)| ≤ |χ−1(T ′)| = |T ′
|.

Condition (1) is then not satisfied for T ′
⊆ S ′, contradicting S ′ being

in excess demand. �
4. Simulations

To conclude, we report the results of a simulation study based
on modifying the algorithm of Andersson et al. (2014). We con-
trast always increasing payoffs for agents in the maximal set in
excess demand (MaxED_Path) with always increasing payoffs for
a randomly selected set in excess demand (Random_Path). For
each problem size, we examine 1000 instanceswith uniformly dis-
tributed values, and for each instance, we compare MaxED_Path
with 1000 random paths. The findings are summarized in Table 1
for problems containing 10–15 agents.

On the top rows of Table 1, the average number of payoff in-
creases needed to converge to pmin is presented for MaxED_Path
and Random_Path. The bottom rows contain percentages describ-
ing how often MaxED_Path requires weakly and strictly fewer
iterations than Random_Path. Notable is that MaxED_Path is
weakly faster than between 95.7% and 96.8% of the random paths.
It also requires on average 16%–21% fewer iterations to converge
to pmin.
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