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Abstract This paper proposes an iterative sealed-bid auction for selling multiple het-
erogeneous items to bidders interested in buying at most one item. It generalizes the
single item bisection auction (Grigorieva et al. Econ Theory, 30:107–118, 2007) to the
environment with multiple heterogeneous items. We focus on the case with two items
for sale. We show that the auction elicits a minimal amount of information on pref-
erences required to find the Vickrey–Clark–Groves outcome (Clarke, Public Choice,
XI:17–33, 1971; Groves, Econometrica, 61:617–631, 1973; Vickrey, J Finance, 16:8–
37, 1961), when there are two items for sale and an arbitrary number of bidders.

Keywords Bisection auction · Multi-item · Unit-demand · Sealed-bid

JEL Classifiation D44 · C72

1 Introduction

Recent research in auction theory has produced a number of papers on iterative auctions
(Mishra and Parkes 2009; Perry and Reny 2005; Ausubel 2004). In an iterative auction
the auctioneer announces a price and bidders submit their bids. A new price based
upon the reported bids is announced by the auctioneer. The process is repeated until
an allocation is determined. This iterative procedure contrasts with the approach taken
in direct mechanisms, where bidders submit their preferences and an allocation is
determined. There are several reasons for focusing on iterative auctions. In iterative
auctions bidders may not reveal all information regarding their private valuations. This
could be a beneficial property. It has been shown that full revelation of preferences

A. Erlanson (B)
Department of Economics, Lund University, Box 7082, 220 07 Lund, Sweden
e-mail: albin.erlanson@nek.lu.se

123



A. Erlanson

can be problematic (Rothkopf et al. 1990; Engelberecht-Wiggans and Kahn 1991).
Partial revelation of preferences can lead to less communication and thereby decrease
the amount of data required for the computation of an allocation. Another argument
for looking closer at iterative auctions is the prevalence of them in real world auctions
(e.g. English auction, Dutch auction, etc.).

One property of importance when analyzing an auction is efficiency. An efficient
assignment maximizes the overall value derived by the bidders. This translates to
designing an auction with efficiency as part of the equilibrium in the game induced by
the auction. The benchmark for the environment with private valuations is the Vickrey–
Clarke–Groves mechanism (Clarke 1971; Groves 1973; Vickrey 1961), henceforth
VCG. The VCG mechanism is a direct mechanism with truth-telling as a weakly
dominant strategy and the equilibrium outcome is efficient. Another classical mech-
anism is the English auction. It is an iterative open bid ascending auction for selling
one item, and its descending counterpart is the Dutch auction. The English auction is
strategically equivalent to the Vickrey auction. Hence, in the English auction it is a
weakly dominant strategy to bid truthfully and the resulting equilibrium is efficient.

The single item bisection auction presented and analyzed by Grigorieva et al. (2007)
is an example of a sealed-bid iterative auction. It elicits a limited amount of information
on preferences, but still reaches the VCG outcome. It has also fewer rounds than
the English auction. In other words, the single item bisection auction has the correct
incentive structure, it is privacy preserving and has a fast convergence rate. For multiple
heterogeneous items things get more complicated. It is a complex problem to solve in
the most general setting where bidders are allowed to bid on any packages of items. In
a seminal paper by Demange et al. (1986) an iterative auction for multiple items with
unit-demand bidders was presented. The auction proposed in Demange et al. (1986)
results in the VCG outcome.

In this paper we propose a multi-item bisection auction. It generalizes the single
item bisection auction (Grigorieva et al. 2007). We keep the assumption from the
single item bisection auction of unit-demand bidders. Thus, we do not consider the
case when bidders bid on packages of items. The auction to be proposed is a multi-item
sealed-bid auction for selling heterogeneous items to bidders interested in acquiring
at most one item. They all have private valuations. In other words it is a standard
assignment problem. To illustrate the idea behind the multi-item bisection auction it is
enough to consider the case with two items for sale. We call this the duo-item bisection
auction. The duo-item bisection auction is later modified to allow for a more selective
elicitation of information on preferences.

All our results are given for the environment with two items for sale. However,
many of them are straightforward to generalize to a setting with more than two items
for sale. The first result establishes an upper limit on the number of iterations for
the duo-item bisection auction. Thereafter we proceed by showing that the duo-item
bisection auction reaches the VCG outcome under the assumption of truthful bidding.
This is not as restrictive as it first may look. There are general results on incentives for
dynamic auction mechanisms implementing the VCG outcome. Loosely speaking the
results establish truthful bidding as a weakly dominant strategy when bidding strategies
are constrained to maximize payoff in each step by taking prices as given (Gul and
Staccetti 2000; Parkes 2001). Our last result concerns the modification of the duo-item
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bisection auction. We prove that the modified duo-item bisection auction attains the
VCG outcome, whilst eliciting the minimal amount of information on preferences.

The single item bisection auction is straightforward to describe. However, already
with two items the generalized bisection auction gets involved and more effort is
required to describe it. This is not specific for this auction mechanism. Using auctions
for solving an assignment problem with an arbitrary number of items and bidders is a
complex problem. There are both computational and theoretical obstacles to overcome.
The multi-item bisection auction can also be seen as a computational alternative for
solving an assignment problem with known valuations.

The rest of the paper is organized as follows. Sect. 2 begins by describing the
single item bisection auction. After this the model is presented together with some
preliminaries. In the subsequent third section the generalized multi-item bisection
auction is described. This is done by considering the case of two items for sale and
discuss the auction mechanism for this scenario. Section 3 ends with a short discussion
of the multi-item bisection auction. Section 4 contains the main results and Sect. 5
concludes the paper.

2 Model, Preliminaries and Background

2.1 Single Item Bisection Auction

The single item bisection auction (Grigorieva et al. 2007) can be used for selling one
indivisible item to a group of bidders with integer valued valuations drawn from a
bounded interval [0, 2R), for some positive integer R. The bisection auction has R
rounds and the starting price in the auction is 2R−1. A bidder in the auction has two
options. She can report a yes answer stating that she is willing to buy the item at the
current price, or report a no answer and thereby stating that she is not willing to buy
the item at the current price. The price changes through the auction as a function of the
reported answers. In case of two or more yes answers the price increases to the middle
of the upper interval [2R−1, 2R). Only bidders with a yes answer in the previous round
are allowed to participate in the next round. In the other scenario, where at most one
bidder submits a yes answer, the price decreases to the middle of the lower interval
[0, 2R−1). The active bidders in the next round are those with a no answer. If exactly
one bidder reported a yes, she is the winner of the auction and the item is given to her.
However, the auction does not terminate. It continues and finds the highest price for
which at least one bidder submits a yes answer.

Repeating this process will eventually yield a winner and a price. The price is the
integer contained in the half open interval generated at the Rth round in this process.
This interval contains exactly one integer, since the interval is decreased by half of its
length in each of the R rounds and the initial length of the interval is 2R . If no round
had exactly one yes answer, then the winner is chosen randomly among the active
bidders at round R. The only information revealed to the bidders’ are the announced
prices in each round. No other information is available (Table 1).

The purpose of this paper is to generalize the single item bisection auction to a setting
with multiple heterogeneous items. For doing this it is convenient to have a description
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Table 1 The single item
bisection auction

Round Price Bidder α Bidder β Bidder γ Bidder δ

1 8 Yes Yes Yes No

2 12 Yes No No –

3 10 – No Yes –

4 11 – – Yes –

of the single item bisection auction in terms of an algorithm. The generalized bisection
auction is going to be based upon the algorithm for the single item case. Let pt

L and pt
H

denote the lower bound respectively the upper bound in the price interval at iteration t.

Algorithm 1 The single item bisection auction.
Start the process with p0

L = 0 and p0
H = 2R and A0 = N . For each iteration

t = 1, 2, . . . , R:

1. Update pt = (pt−1
L + pt−1

H )/2, if t < R collect answers from the set of active
bidders in At−1, else if t = R the auction terminates.

(i) If two or more bidders report yes, set pt
L = pt , pt

H = pt−1
H , At = {i ∈ At−1 :

i reported yes}, t = t + 1 and repeat from step 1.
(ii) If every bidder report no, set pt

L = pt−1
L , pt

H = pt , At = At−1, t = t + 1
and repeat from step 1.

(iii) If only bidder i report yes, set pt
L = pt−1

L , pt
H = pt , At = At−1 \ {i},

t = t + 1 and move on to step 2.
2. Update pt = (pt−1

L + pt−1
H )/2, if t < R collect answers from the set of active

bidders in At−1, else if t = R the auction terminates.
(i) If one or more bidders report yes, set pt

L = pt , pt
H = pt−1

H , At = {i ∈
At−1 : i reported yes}, t = t + 1 and repeat from step 2.

(ii) If every bidder report no, set pt
L = pt−1

L , pt
H = pt , At = At−1, t = t + 1

and repeat from step 2.

Below is in an example illustrating the single item bisection auction using the
formulation in Algorithm 1.

Example 1 Suppose there are four bidders α, β, γ , and δ participating in the auction.
They have the following valuations for the item: vα = 13, vβ = 9, vγ = 11 and vδ = 6,
drawn from the interval [0, 16). There will be 4 rounds in the auction before the winner
and the price can be determined. In all of our examples bidders bid truthfully. A bidder
reports yes if her valuation is above or equal to the current stated price, and if the price
is above her valuation she reports no.

The process starts with the lower bound of p0
L = 0 and the upper bound of p0

H = 16.
Every bidder belong to the set of active bidders in the first round, i.e. A0 = {α, β, γ, δ}.
In the first round the price is set to p1 = (p0

L + p0
H )/2 = 8 and answers are collected

from every bidder. There are three yes answers and one no answer in the first round.
With more than two yes answers we end up at step 1.(i). First the price bounds are
updated, p1

L = p0 = 8 and p1
H = p0

H = 16, then the set of active bidders for the
next round is formed. It consists of those with a yes answer, using the notation from
Algorithm 1, A1 = {α, β, γ }. The second round starts at step 1 with updating the
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price p2 = (p1
L + p1

H )/2 = 12 and then collecting answers from bidders in A1. At
the price of 12, α is the sole bidder with a yes answer, and α is the winner of the
auction. We are now at step 1. (iii), the price bounds are updated p2

L = p1
L = 8

and p2
H = p1 = 12. Round number 3 begins at step 2 in Algorithm 1, the price

is updated to p3 = (p2
L + p2

H )/2 = 10 and answers are collected from β and γ .
With one yes answer from γ and one no answer from bidder β, we are in 2. (i)
and the price bounds are updated, p3

L = p3 = 10, p3
H = p2

H = 12. In the fourth
and last step the price is updated to p4 = (p3

L + p3
H )/2 = 11. A yes answer is

collected from γ , the only bidder still active, and the auction terminates. bidder α is
the winner of the auction. She gets the item and pays the price of 11. This is the VCG
outcome.

2.2 Model and Preliminaries

Let the finite sets of items and bidders be denoted by M = {1, . . . m} and N =
{1, . . . n}, respectively. Denote by vi j bidder i’s valuation of item j. Valuations are
assumed to be non-negative integers drawn from a distribution function with support
on (0, 2R], for some positive integer R. Every bidder i ∈ N knows her own valuation
for each item in M. Valuations are i.i.d. random variables. Construct the matrix V of
all valuations vi j with n rows and m columns. Row i contains bidder i’s valuations and
column j contains all valuations for the jth item. The payoff for bidder i for obtaining
item j ∈ M at the price p j is given by vi j − p j .

There is a null-item denoted by 0. The value and the price of it is zero and it can
be assigned to any number of bidders. For notational convenience let M̃ = M ∪ {0}.
The standard notation of N−i is employed, it stands for the set N excluding bidder i.
The demand correspondence for bidder i at price vector p is defined as,

Di (p) = { j ∈ M̃ : vi j − p j ≥ vi j ′ − p j ′ for all j ′ ∈ M̃}.
The model with multiple heterogeneous indivisible items and bidders consuming at

most one item is a standard assignment problem. Applications of the model includes for
example housing markets. Using auctions is one way to solve the assignment problem
and obtain an allocation. Let the pair (x, p) ∈ M̃n × N

m+1+ denote an allocation. The
first component x is an assignment and p is a price vector, where xi indicates which
object bidder i is assigned and p j is the price of object j . An allocation is feasible if:

(i) xi �= xi ′ for all i �= i ′ and xi , xi ′ ∈ M
(i i) if p j > 0 then xi = j for some i ∈ N .
An allocation (x, p) is efficient if:∑

i∈N vi xi ≥ ∑
i∈N viyi for all feasible allocations (y, p).

There are several possible ways to measure the degree of preference elicitation.
In this paper a sort of binary measure is employed. This approach resembles the one
taken in Andersson and Andersson (2012) and Hudson and Sandholm (2004). They
also measure the degree of elicitation of preferences in relation to full revelation. A
bidder’s valuation for an item is considered elicited if the exact value is known to the
auctioneer. The total number of valuations are nm, full revelation of preferences means
that all nm valuations are elicited, and the measure equals one. At the other extreme
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with no information at all about preferences the value of the measure is zero. In all
other cases the measure lies between zero and one.

Definition 1 The measure on preference elicitation is defined as the ratio between the
number of elicited valuations and the total number of valuations nm.

The multi-item bisection auction to be proposed elicits valuations from one item at
a time, and then an allocation is computed after the last round. The auction mecha-
nism can be viewed as a method of iteratively eliciting information on preferences to
compute the VCG outcome. Let us formalize what we mean by iteratively eliciting
information on preferences.

Definition 2 Let E be an n×m matrix consisting of only zero entries. For each j ∈ M
construct a sequence of vectors (x j,k)m

k=0, where each vector x j,k ∈ R
n and x j,0 is

equal to the zero vector of dimension n. For each elicited valuation k , 1 ≤ k ≤ m, let
x j,k

i = vi j and for each h �= i , x j,k
h = x j,k−1

h . When the elicitation of valuations for
item j is terminated, at step k ≤ m, let the j th column of E be given by x j,k . This
formalizes what we call a method of iteratively eliciting information on preferences.

3 A Generalized Bisection Auction

3.1 Duo-Item Bisection Auction

The duo-item bisection auction is a sealed-bid auction for selling two items. It is
presented in terms of an algorithm. The algorithm generates price vectors and an
allocation is computed based upon the bidders’ answers in the process. Call the two
items for sale 1 and 2. Further, denote by p1 and p2 the final prices to be generated
in the auction. The idea of obtaining prices by decreasing the length of intervals is
maintained. As stated before we let pt

1L denote the lower bound of the price for item 1 at
iteration t and pt

2L denotes the lower bound for item 2 at iteration t. The corresponding
upper bounds for item and 1 and 2 at iteration t are denoted pt

1H and pt
2H .

In order to be able to reach the VCG-outcome it is necessary to elicit more informa-
tion on preferences than in the single item case. To elicit more information the single
item bisection auction will be divided into different sub-processes. Each sub-process
is a continuation of the original process and a unique price is generated after in total
R iterations, counting from the beginning of the auction. The division into new sub-
processes can occur several times and it always creates two new processes. We will
call this division of the process a split and it is defined as follows.

Definition 3 A split in Algorithm 1 at step t divides the process in two parts. Process
1 consists of bidders with a yes answer for item j at price pt

j , the updated price bounds

are pt
j L = pt

j and pt
j H = pt−1

j H . The active bidders at step t with a no answer for item

j are in process 2, the price bounds are pt
j L = pt−1

j L and pt
j H = pt

j . Each process
continues from iteration t + 1.

The bidders in the process with a yes answer at the split are called yes-bidders
and similarly bidders with a no answer are called no-bidders. The auctioneer does not
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inform the bidders about the split, and they cannot infer that a split has occurred from
only observing the price path in the auction. This is possible since it is a sealed-bid
auction and the only information they receive is the announced price. In both processes
prices are updated based on the rules of the single item bisection auction, and it is not
possible to differentiate among the two processes.

For the single item bisection auction it was sufficient to find one price. Here we need
two prices, one for item 1 and another for item 2. Building on the process in Algorithm 1
the duo-item bisection auction is constructed. The idea is to use Algorithm 1 for finding
prices for item 1 and 2 separately. And by combining Algorithm 1 with splits several
prices for each item can be generated, and a sufficient amount of information about
bidders’ preferences can be elicited.

Algorithm 2 The duo-item bisection auction.
Start the auction with p0

L = (p0
1L , p0

2L) = (0, 0), p0
H = (p0

1H , p0
2H ) = (2R, 2R),

A0 = N , and initialize Algorithm 1 with item 1 and keep the price for item 2 fixed
at 2R .

1. Check for each iteration in Algorithm 1 after step 1:
(i) If one bidder answered yes, split the auction and go to 2.

(ii) If two bidders answered yes, split the auction and go to 3.
(iii) Otherwise keep on iterating Algorithm 1.

2. Process 1 with the yes-bidder continue to step 2 in Algorithm 1, call the price
generated pR

1 (1). Process 2 remains at step 1 in Algorithm 1. If one bidder reports
yes another split is made, else keep on iterating and call the price generated pR

1 (2).
If a split occurs both processes continue to step 2 in Algorithm 1. Let pR

1 (2) be
the price from the first process and pR

1 (3) from the other.
3. Process 2 with the no-bidders continue to step 2 in Algorithm 1, call the price

generated pR
1 (3). Process 1 remains at step 1 in Algorithm 1. If one bidder reports

yes another split is made, else keep on iterating call the price generated pR
1 (1). If

a split occurs both processes continue to step 2 in Algorithm 1. Let pR
1 (1) be the

price from the first process and pR
1 (2) from the other.

4. Start Algorithm 1 with item 2 and set the price for item 1 to 2R . Repeat step 1 to
3 from above.

Now, using the information from Algorithm 2 an allocation consisting of a price
vector and an assignment can be determined. It will be shown later in the paper that
the process in Algorithm 2 can be viewed as a method of successively eliciting the
information necessary to compute the VCG outcome.

Algorithm 2 generates at most three different prices for each item and three associ-
ated sets of bidders. This follows from the fact that each process in Algorithm 2 leads
to a distinct price pR

j (k), with j = 1, 2 and k = 1, 2, 3. Denote the set of winners in

each separate process by W k
j . The set of winners for each process consist of bidders

with a yes answer for the highest associated price in their specific process. For example
if the first split is with one bidder, then the set of winners equals this bidder with the
yes answer. Further, let W j = W 1

j ∪ W 2
j ∪ W 3

j for j = 1, 2, and define a function

f : W1 × W2 �−→ N as f (i, j) = pR
1 (i)+ pR

2 ( j). Now the allocation can be defined.
The assignment is determined as follows,
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Table 2 Initializing the
duo-item bisection auction
and the first split for item 1

Round Price Bidder α Bidder β Bidder γ Bidder δ

1 8 Yes Yes Yes No

2 12 Yes No No –

3 14 No – – –

4 13 Yes – – –

Table 3 The second split for
item 1 in the duo-item bisection
auction

Round Price Bidder β Bidder γ

3 10 No Yes

xi ′ = 1, x j ′ = 2, where (i ′, j ′) ∈ arg max
(i, j)∈W1×W2

f (i, j) and xk = 0for all otherk ∈ N .

(1)

The prices of item 1 and 2 are,

p1 = max
(i, j)

f (i, j) − pR
2 ( j ′), where (i, j) ∈ (W1 \ {i ′}) × (W2 \ {i ′})

p2 = max
(i, j)

f (i, j) − pR
1 (i ′), where (i, j) ∈ (W1 \ { j ′}) × (W2 \ { j ′}). (2)

Below is an example of how the duo-item bisection auction works.

Example 2 Consider a situation with the same bidders as in Example 1, and add a
second item. Call the item from the first example item 1 and the new item 2. The
bidders α, β, γ and δ have private valuations for item 1 and 2. Collect the valuations
for item 1 and 2, in a matrix V .

V =

⎛

⎜
⎜
⎝

vα1 vα2
vβ1 vβ2
vγ 1 vγ 2
vδ1 vδ2

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

13 4
9 9
11 7
6 5

⎞

⎟
⎟
⎠

The two first price updates in the duo-item bisection auction are identical to the
single item case. In the test after the second price update at step 1 in Algorithm 2 the
condition in 1.(i) is satisfied and the first split is made. After the split we move on to
step 2 in Algorithm 2. Process 1 with the yes-bidder α continues to step 2 in Algorithm
1 with the price bounds updated to p2

L = p2 = 8, p2
H = p1

H = 16. Henceforth process
1 follows the rules of Algorithm 1 and a price of 13 is found in round 4, the path is
displayed in Table 2. The price p4

1(1) = 13 found equals bidder α’s valuation for
item 1.

Process 2 with the no-bidders β and γ stays at step 1 in Algorithm 1 and the price
bounds are updated to p2

L = p1
L = 8, p2

H = p2 = 12. The price in round 3 is updated
to 10 and this leads to a new split, see Table 3 below.
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Table 4 Last rounds for item 1
in the duo-item bisection auction

Round Price Bidder γ

4 11 Yes

4 9 Yes

Table 5 Initializing the
duo-item bisection auction
for item 2 and the first split

Round Price Bidder α Bidder β Bidder γ Bidder δ

1 8 No Yes No No

2 12 – No – –

3 10 – No – –

4 9 – Yes – –

Table 6 The second split
for item 2 in the duo-item
bisection auction

Round Price Bidder α Bidder γ Bidder δ

2 4 Yes Yes Yes

3 6 No Yes No

Table 7 Last rounds in the
duo-item bisection auction
for item 2

Round Price Bidder α Bidder δ Round Price Bidder γ

4 5 No Yes 4 7 Yes

In the process with the yes-bidder γ the price bounds are updated to p3
L = p3 = 10,

p3
H = p2

H = 12 and the price announced is 11. With the price of 11 γ reports yes and
we have found her valuation for item 1. The other process with the no-bidder β ends
up in a price of 9, which equals her valuation for item 1. Table 4 below shows the final
step with bidder γ and β leading to the two separate prices.

At this point in the duo-item bisection auction we have obtained the three highest
valuations for item 1 and can continue with item 2. The procedure in Algorithm 2 is
the same for item 2 therefore the various steps are not described as carefully. Table 5
summarizes the path for finding the highest valuation for item 2, it equals the price
p4

2(1) = 9.
The first split was made already in iteration 1 after the first price announcement for

item 2. All bidders except β reported no when the price was announced to 8 and they
moved on to a new separate process. Table 6 below shows the two first rounds in this
process. In the second round of this new process the price is announced to 6 and yet
another split occurs.

After the final split the price is set to 5 in the process with the no-bidders α and δ,
and it is set to 7 with the yes-bidder γ. Now the three highest valuations for item 1 and
2 are elicited and an allocation can be determined as described by Eqs. (1) and (2).

In the resulting allocation item 1 is given to α and she pays the price of 11, and
item 2 is given to β for a price of 7. This corresponds to the VCG outcome.
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3.2 Modified Duo-Item Bisection Auction

In this section a modification of the duo-item bisection auction is presented. This
modified version will be shown to extract the minimal amount of information on
preferences required to compute the VCG outcome. The procedure in this auction is
same as before. Algorithm 3 will generate prices and sets of potential winners for
items 1 and 2. Using these an allocation is determined in the same way as for the
standard duo-item bisection auction defined by Eqs. (1) and (2). The only difference
between Algorithms 2 and 3 is that the latter elicits less information on preferences
without giving up the possibility for the VCG outcome (Table 7).

Before defining the modified duo-item bisection auction let us recall the meaning
of sets denoted by W k

j . They were introduced in Sect. 3.1. Take for example the set

W 1
j . It consists of bidders with a yes answer for the highest associated price in the

elicitation process for item j .

Algorithm 3 The modified duo-item bisection auction.

1. Run Algorithm 2 until item 2 has passed step 1. Generate W 1
2 and the second

highest price for item 2.
2. If |W 1

1 ∪W 1
2 | = 1 continue in Algorithm 2 and generate pR

2 (1). Further if pR
1 (1)+

pR
2 (2) ≥ pR

1 (2)+ pR
2 (1) or |W 2

1 ∪W 2
2 | = 1, continue in Algorithm 2 and generate

the third highest price for item 2.
3. If |W 1

1 ∪ W 1
2 | = 2 consider the two cases.

(i) If |W 1
2 | = 2 continue in Algorithm 2 and elicit pR

2 (2).
(ii) If |W 1

2 | = 1 there are two cases depending on |W 1
1 |.

a) For |W 1
1 | = 1, generate pR

2 (1) if |W 2
1 ∪ W 1

2 | = 1 and generate pR
2 (3) if

|W 1
1 ∪ W 2

2 | = 1.
b) For |W 1

1 | = 2, generate pR
2 (1) and generate pR

2 (3) if |W 1
1 ∪ W 2

2 | = 2.
4. If |W 1

1 ∪ W 1
2 | ≥ 3 the auction terminates.

Example 3 This example illustrates the modified duo-item bisection auction. The
setup is the same as in example 2, we continue with the four bidders and their val-
uations. Nothing changes for item 1 in the modified duo-item bisection auction, the
change is for item 2. In the first step of Algorithm 3 the price for item 2 is set to 8
and answers are collected. The only bidder with a yes answer is β, and thereby W 1

2 is
generated. Now it remains to find the second highest price p4

2(2). The auction splits
and every bidder with a no answer in the first round moves to a new process, which is
illustrated in Table 8 below.

Now, Step 1 in Algorithm 3 is completed with the second highest price generated,
and we continue in Algorithm 3. There are two different bidders with the highest

Table 8 The modified duo-item
bisection auction

Round Price Bidder α Bidder γ Bidder δ

2 4 Yes Yes Yes

3 6 No Yes No

4 7 – Yes –
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valuation for item 1 and 2. This makes step 3 the appropriate next step in Algorithm
3. There are three different scenarios at step 3. With |W 1

1 | = |W 1
2 | = 1 we end up

in the middle (ii), since both inequalities are violated there is no need to generate
more prices and Algorithm 3 ends here. The final part in the auction is identical to
example 2, hence bidder α is given item 1 to the price of 11 and β buys item 2 for the
price of 7. The modified duo-item bisection auction neither elicited the highest nor
the third highest price for item 2. In terms of iterations the modified version saved 4
iterations out of 15 in total.

3.3 Multi-Item Bisection Auction

Extending the duo-item bisection auction to a situation with more than 2 items for sale
can be done in the following manner. Suppose there are m > 2 items to allocate in the
auction. Instead of eliciting the 3 highest valuations for item 1 and 2, the multi-item
bisection auction elicits the m +1 highest valuations for all m items, assuming n > m.
The method is the same as before and it builds on splitting up the auction into separate
processes. Similarly to the environment with 2 items for sale the auction begins with
item 1 and generates the m + 1 highest valuations for item 1. The first split is made
when there is a yes answer from j < m +1 bidders. The jth highest valuations for item
1 are elicited in the group with yes-bidders and new splits are made if necessary. The
remaining valuations to get the m+1 highest valuations for item 1 are elicited from the
group of no-bidders from the first split. This procedure continues item per item until
the m +1 highest valuations for item m are elicited. The allocation is determined in an
analogous manner to the duo-item bisection auction. Based upon the prices’ generated
from the auction an efficient assignment is found. The price for item j is determined
by calculating the difference between the efficient assignment in N and N−i , where
bidder i is the bidder assigned item j.

The main advantages with the multi-item bisection auction vanish when the number
of bidders and the number of items are approximately of the same size. Then the
multi-item bisection auction basically reveals all information on preferences, and it
would have been better to use a direct mechanism from the beginning. The remedy of
this would be to create a modification similar to the environment with two items for
sale. However, creating such a modification is not as easily done for the general case
with m items. The number of possible combinations for efficient assignments grows
exponentially with the number of items and it is difficult to find clear cut conditions as
with the duo-item auction. The main contribution of the multi-item bisection auction
in this context is as an alternative way of solving the standard assignment problem.

4 Main Results

Before presenting the main results a family of partitions of the bidders needs to be
introduced. These partitions makes it possible to keep track of the various cases that
will be of importance for the following proofs. Informally speaking these partitions
sorts bidders according to their valuations of the various items. Based on this sorting
the VCG outcome can be assured.
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The bidders in the set N can be partitioned into m partitions, one partition Tj for
each item j ∈ M . Each partition Tj is based on valuations among the bidders for item
j. It is constructed in the following manner. Define for each item j ∈ M a set Tj,1,
consisting of all bidders (could be one or more) with the highest valuation of item j, i.e.
Tj,1 = arg maxi∈N vi j . This gives the first subset Tj,1 in the partition Tj . Consecutively
define the subset Tj,2 in the partition Tj consisting of bidders (could be one or more)
with the highest valuation for item j amongst remaining bidders in N \ Tj,1, formally
Tj,2 = arg maxi∈N\Tj,1

vi j . Repeating this procedure until all bidders are assigned
into a subset Tj,k creates the partition Tj . For each step in the process the group of
bidders not yet assigned into a subset is decreasing with at least one. Subset Tj,k in
the partition Tj consists of bidders with the highest valuation for item j among the
remaining bidders not yet assigned into a subset at step 1, 2, . . . , k − 1. To express
the subsets formally in partition Tj , let T k−1

j = ∪k−1
m=1Tj,m . Now, the subset Tj,k can

be written as Tj,k = arg maxi∈N\T k−1
j

vi j . Denote by i jk a bidder belonging to Tj,k .

Thus, bidder i jk has the |T k−1
j | + 1 highest valuation for item j .

In an auction with two items for sale and at least two bidders there are three pos-
sible efficient allocations. In case of several efficient allocations a tie-break rule that
randomly picks one of them is used. These are the three scenarios, and they will be
used extensively in the following proofs.

(I) |T1,1 ∪ T2,1| ≥ 2 with x given by, xi11 = 1, xi21 = 2 and xi = 0 for all
i ∈ N \ {ii11, ii21}

(II) |T1,1∪T2,1| = 1 and vi111+vi222 ≥ vi121+vi212 with x given by, xi11 = 1, xi22 =
2 and xi = 0 for all i ∈ N \ {ii11 , ii22}

(III) |T1,1 ∪ T2,1| = 1 and vi111 + vi222 < vi121 + vi212 with x given by, xi12 =
1, xi21 = 2 and xi = 0 for all i ∈ N \ {ii12 , ii21}

As pointed out earlier the single item bisection auction has R iterations. The number
of iterations required in the duo-item bisection auction varies, but there is an upper
bound. Our first result establish an upper limit on the number of iterations for the
duo-item bisection auction.

Proposition 1 The duo-item bisection auction has an upper limit on the number of
iterations of 6(R − 1).

Proof For item 1 there can at most be two splits which would generate three prices.
The same is true item 2. Without any split 2R iterations is required in the duo-item
bisection auction. A split at t∗ < R starts two new processes and each process requires
R − t∗ iterations to generate a price and before the split there was R − t∗ iterations.
Hence in total a split at t∗ adds R − t∗ number of iterations. The earliest the first split
can arise is in iteration 1 and the second split in the next iteration. Thus, the upper
limit for the number of iterations is 2(R + (R − 1) + (R − 2)) = 6(R − 1), which is
reached if six prices are generated and all four splits happens as early as possible.

The VCG outcome is an efficient allocation and the prices are uniquely determined.
It is the benchmark for any auction. Loosely speaking the price paid by bidder i
assigned item j equals the externality bidder i imposes on the others by its existence
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in the economy. Given an efficient assignment x the VCG price of item j depends on
how the efficient allocation looks in the economy without the bidder who originally
was assigned item j.

In specifying the VCG outcome we need to give an assignment and an associated
price vector. To define the VCG outcome in a concise manner let v(i, j) = vi1 + v j2.
Now, the VCG outcome is defined as,

xi ′ = 1, x j ′ = 2, where (i ′, j ′) ∈ arg max
(i, j)∈N×N

v(i, j) and xk = 0 for all other k ∈ N .

(3)

The prices for item 1 and 2 are,

p1 = max
(i, j)

v(i, j) − v j ′2, where (i, j) ∈ (N−i ′ × N−i ′)

p2 = max
(i, j)

v(i, j) − vi ′1, where (i, j) ∈ (N− j ′ × N− j ′).
(4)

Computing the VCG outcome in the generic case with two items requires the three
highest valuations for both items. To determine an efficient allocation it is sufficient
to know the two highest valuations for item 1 and 2, but for the prices we need the
three highest valuations. The next result establish that the duo-item bisection auction
reaches the VCG outcome. In other words it leads to an efficient assignment and the
prices in the allocation are equal to the prices given by Eq. (4) above.

Proposition 2 The duo-item bisection auction results in the VCG outcome under
truthful bidding.

Proof Under truthful bidding prices generated in the duo-item bisection auction equals
the true valuations. In other words generating prices is the same as eliciting preferences.
Algorithm 2 elicits the three highest valuations for item 1 and 2. This is the information
on preferences required to compute the VCG outcome. Hence, the function v can be
restricted to this domain and still the VCG outcome can be computed by Eqs. (3) and
(4) above. Furthermore, the function v equals f on this restricted domain and therefore
the allocation found by Eq. (1) and (2) must be the same as the VCG outcome.

The plan for the rest of this section is to prove that the modified duo-item bisection
auction elicits the minimal amount of information on preferences, required to find the
VCG outcome for any sequential elicitation method and all conceivable valuations V.

Lemma 1 In any sequential elicitation method reaching the VCG outcome for all
conceivable valuations V it is necessary to elicit the three highest valuations for
item 1.

Proof Suppose there is only one bidder with the highest valuation for item 1 and 2, then
the highest valuation for item 1 is required to determine an efficient allocation. The next
example shows that the second and the third highest valuations are necessary to find the
VCG outcome. Consider scenario (I) with the efficient assignment xi11 = 1, xi21 = 2
and |T1,1 ∪ T2,1| = 2. Suppose bidder i21 assigned item 2 also has the second highest
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valuation for item 1, formally |T1,2 ∪ T2,1| = 1. Similarly bidder i11 assigned item 1
has the second highest valuation for item 2, formally |T1,1 ∪ T2,2| = 1. Then there are
two possible efficient assignments in the economy N−i11 , either xi12 = 1, xi23 = 2,
or xi13 = 1, xi21 = 2. The latter is efficient when vi121 + vi232 ≤ vi131 + vi212 and if
the inequality is reversed the former is efficient.1 Hence, we need vi121, vi131, vi222 and
vi212 to find the VCG price for item 1. Thereby we can conclude that it is necessary to
elicit all the three highest valuations for item 1.

Lemma 2 With truthful bidding the modified duo-item bisection auction elicits a nec-
essary amount of information on preferences to reach the VCG outcome for all con-
ceivable valuations V .

Proof The proof follows the structure of Algorithm 3. We will show step by step that
the valuations elicited in Algorithm 3 are required to find the VCG outcome. First,
to find an efficient assignment the information on who has the highest valuation is
required. Next, if we are in scenario (II) or (III), the second highest valuation for
item 2 is required to find an efficient assignment. For scenario (I) the second highest
valuation for item 2 is required to compute the VCG prices. Hence, the information
elicited on preferences in step 1 is necessary to find the VCG outcome.

Moving on to step 2 where Algorithm 3 proceeds to when we have scenario (II) or
(III). To find the efficient assignment the highest valuation for item 2 is required in
both scenarios.

– Let us begin with scenario (II) and see why it is necessary sometimes to elicit the
third highest valuation for item 2. The efficient assignment for scenario (II) is to
give item 1 to bidder i11 and item 2 to bidder i22. One candidate for the VCG price
for item 2 equals vi232. Hence, the third highest valuation for item 2 should be
elicited.

– Looking at scenario (III), where the efficient assignment is to give item 1 to bidder
i12 and item 2 to bidder i21. Impose further the condition of |T1,2 ∪ T2,2| = 1. One
candidate for the efficient assignment in N−i21 is when bidder i12 keeps item 1
and bidder i23 is assigned item 2. To evaluate this candidate we need to know the
third highest valuation for item 2. Thus, it is necessary to elicit the information on
preferences as described in step 2 of Algorithm 3.

Next consider step 3 in Algorithm 3, where we end up if |T1,1 ∪ T2,1| = 2. In the
efficient assignment bidder i11 is given item 1 and bidder i21 is given item 2. At step
3 in Algorithm 3 there are two cases to consider (i) and (ii).

– First, consider case (i) with two bidders having the highest valuation for item 2.
Then letting bidder i11 keep item 1 and giving item 2 to the bidder with the third
highest valuation is a candidate for an efficient assignment in the economy N−i21 .
Hence, eliciting the third highest valuation is necessary to find the VCG price for
item 2.

– The other case (ii) is when one bidder has the highest valuation for item 2. To
complicate the matter there are two possible subcases (a) and (b), when one bidder
has the highest valuation for item 2.

1 If equality both assignments are efficient, and both of them are possible choices.
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1. In sub-case (a) of Algorithm 3 at step 3.(ii), where there is one bidder with the
highest valuation for item 1. If |T1,2 ∪ T2,1| = 1 the highest valuation for item
2 is elicited. It is required to evaluate the candidate for an efficient assignment
in N−i11 . The candidate consists of giving item 1 to bidder i13 and item 2 to
bidder i21. Similarly when |T1,1 ∪T2,2| = 1 the third highest valuation for item
2 is required to evaluate the efficient assignment in N−i21 .

2. In sub-case (b) of Algorithm 3 at step 3.(ii) the highest valuation for item
2 is always elicited. Since, one candidate for an efficient assignment in the
economy N−i11 is to give item 1 to bidder i12 and item 2 to bidder i21. The
third highest valuation is elicited only if |T11∪T22| = 2. Because one candidate
for an efficient assignment in N−i21 is to give item 1 to bidder i21 and item 2
to bidder i23, recall that bidder i21 also has the highest valuation for item 1.

Now it remains to look at step 4 in Algorithm 3, where we end up if |T1,1 ∪ T2,1| ≥ 3.
This is straightforward. The VCG price for item 1 respectively 2 equals the second
highest valuation for item 1 respectively 2.

Lemma 3 With truthful bidding the modified duo-item bisection auction elicits a suf-
ficient amount of information on preferences to reach the VCG outcome for all con-
ceivable valuations V .

Proof The proof goes through each of the three scenarios (I), (II) and (III). For each
of them we establish that the information on preferences suffices to find the VCG
outcome. To begin with we can conclude that in all three scenarios. The information
on preferences suffices to determine an efficient assignment. Lemma 3 boils down
to whether the available information on preferences suffices to determine the VCG
prices.

Let’s first look at scenario (II) and (III). In scenario (II) Algorithm 3 elicits each of
the three highest valuations’ for item 2, this always suffices to find the VCG outcome.
Since, eliciting the three highest valuations for both items is the maximal amount of
information required to determine the VCG outcome with two. In scenario (III) both
of the two highest valuations’ for item 2 are elicited. The third highest valuation for
item 2 is not elicited when |T1,2 ∪ T2,2| ≥ 2. This causes no problem because bidder
i23 is neither an alternative for item 2 in N−i12 nor in N−i21 .

Now, consider the remaining scenario (I). The case with |T1,1 ∪ T2,1| ≥ 3 was
covered in the proof of Lemma 2 and there is nothing to be added. Moving on to the
other case in scenario (I) with |T1,1 ∪ T2,1| = 2. It is enough to discuss the cases
when Algorithm 3 does not elicit all of the three highest valuations’ for item 2. Which
means that it suffices to consider cases in scenario (I) where one bidder has the highest
valuation for item 2. Taking all this together it remains to cover cases in scenario (I)
with |T1,1 ∪ T2,1| = 2 and |T2,1| = 1

– Begin by looking at the case with |T1,1| = 2 and |T2,1| = 1. In this case we are in
step 3.(ii)(a) of Algorithm 3. The highest and the second highest valuation for item
2 are elicited. The third highest valuation is not elicited when |T1,1 ∪ T2,2| ≥ 3.
This does not cause any problems. The VCG price for item 2 equals vi222 and
for item 1 there are two candidates for an efficient assignment in N−i11 . The first
candidate is to give item 1 to bidder i11 and item 2 to bidder i22. In the other
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alternative item 1 is given to bidder i12 and item 2 to bidder i21. Hence, the third
highest valuation is not required.

– Next consider the case with |T1,1| = |T2,1| = 1. Here there are four sub-cases.
1. When |T1,2∪T2,1| ≥ 2 and |T1,1∪T2,2| ≥ 2 the VCG price for both items equals

the second highest valuation for each item, and we conclude that eliciting the
second highest valuation, as is done in Algorithm 3, for item 2 is enough.

2. Now, suppose one of the conditions changes. Say |T1,2 ∪ T2,1| = 1 and the
other condition remains, |T1,1 ∪ T2,2| ≥ 2. The VCG price for item 2 is still
equal to vi222, but the price for item 1 changes. In Algorithm 3 the highest
valuation for item 2 is elicited. This is all what is needed to find the VCG
price for item 1. Since, bidder i22 has the highest valuation for item 2 amongst
remaining bidders in N−i11 . Hence, no need to elicit the third highest valuation
for item 2.

3. A similar argument can be made when |T1,2 ∪ T2,1| ≥ 2 and |T1,1 ∪ T2,2| = 1.
The price for item 1 equals vi121 and the VCG price for item 2 can be found
with the knowledge of the second and the third highest valuation for item 2.
bidder i21 cannot be assigned any item in N−i21 .

4. Finally when both |T1,2 ∪ T2,1| = 1 and |T1,1 ∪ T2,2| = 1 all three highest
valuations for item 2 are elicited.

Thus, in scenario (I) Algorithm 3 elicits the required amount of information on pref-
erences to find the VCG outcome.

Theorem 1 The modified duo-item bisection auction elicits the minimal amount of
information on preferences to reach the VCG outcome for all conceivable valuations
V , and for any sequential elicitation method.

Proof Lemma 1,2 and 3 taken together proves Theorem 1. ��

5 Conclusion

We have proposed a multi-item bisection auction, focusing on the case with two items
for sale. It is a generalization of the single item auction (Grigorieva et al. 2007). The
analysis of the auction has been carried out in the environment with two items for sale.
The auction results in the VCG outcome. As part of the analysis in the environment
with two items for sale a modified version was presented. We proved that the modified
version elicits the minimal amount of information on preferences required to reach the
VCG outcome for any sequential elicitation method. In other words the information
acquired is sufficient and necessary for computing the VCG outcome.

In this sense it resembles the idea of the single item bisection auction, where only
the second highest valuation is revealed. However, with two items for sale it is not
enough to elicit only the second highest valuation to compute the VCG outcome. More
information on preferences is required. The other agents’ valuations are only revealed
up to the point such that the winner, the second highest and the third highest valuation
can be determined.

An open question, that is not addressed within this paper, is the trade-off between
speed of the auction and efficiency. In the current formulation increases are made

123



The Duo-Item Bisection Auction

in unit steps. A method to improve the speed of the auction is to allow for larger
increases in prices. Since we do not have a process for decreasing prices, the problem
of increasing prices with more than one is that we might obtain inefficient outcomes.
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