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1. Introduction

A crucial part of designing mechanisms is to elicit private
information. It is often assumed that private information can-
not be verified in any way. However, there are many real-life
situations when information indeed is verifiable as it may be
based on hard information. In a recent paper, Ben-Porath et al.
(2014) (henceforth called BDL) analyzed costly verification in a
model where a principal allocates an indivisible good to privately
informed agents. They showed that the optimal Bayesian incen-
tive compatible mechanism for the principal is in the class of
“threshold mechanisms”.! In a threshold mechanism, provided
that some report is above the threshold, the agent with the
highest reported value is verified and gets the object if he was
truthful, and the object is randomly allocated according to a given
probability distribution otherwise. If an agent is caught lying he
does not receive the object.

BDL point out that, somewhat surprisingly, the optimal mech-
anism is ex-post incentive compatible. Thus, the optimal mecha-
nism does not use the extra flexibility that a Bayesian mechanism
offers. We explain this observation by establishing a more general
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equivalence: for any Bayesian incentive compatible mechanism
there exists an “equivalent” mechanism that is implementable
in ex-post equilibrium and induces the same expected verifica-
tion costs. Proving the equivalence might help to analyze this
or related models because it allows to optimize over a smaller
class of ex-post incentive compatible mechanisms. Since these
mechanisms are conceptually simpler the corresponding analysis
might sometimes be more tractable. Similar equivalence results
exist in the standard one-dimensional mechanism design setting
with single-crossing and quasi-linear utilities (Mookherjee and
Reichelstein, 1992; Manelli and Vincent, 2010; Gershkov et al.,
2013).

In the second part of this note we provide an alternative proof
for the optimality of threshold mechanisms? by using insights
from the literature on interim allocation rules.> To prove the
optimality of threshold mechanisms we observe that the rele-
vant incentive constraints are formulated in terms of interim
allocation and verification rules. Thus, we can restate the op-
timization problem using only interim rules and optimize over
them directly, which is significantly easier. A characterization of
feasible interim allocation rules is readily available due to Bor-
der (1991), and we can show that threshold mechanisms are
optimal. Our approach of using interim allocation rules to solve
for optimal mechanisms is one example among several recent
papers, for other examples see Mierendorff (2016), Mylovanov
and Zapechelnyuk (2017) and Pai and Vohra (2014).

2 Another proof of the optimality of threshold mechanisms can be found
in Lipman (2015).

3 An interim allocation rule or reduced form maps the type of an agent
into the expected probability of being allocated the object. The set of feasible
interim allocation rules has an explicit description (Border, 1991) and a nice
combinatorial structure (Che et al., 2013).
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The rest of the note is organized as follows. In Section 2 we
introduce the model. In Section 3 we formalize and prove the
equivalence between Bayesian and ex-post incentive compatible
mechanisms. In Section 4 we provide our alternative proof for the
optimality of threshold mechanisms.

2. Model and incentive constraints

The principal wants to allocate one indivisible object among
agents in Z = {1,...,I}. Agents are privately informed about
their types tl € T = [t;, t;], where —o0 < t; < t; < oo.
The principal receives value t; when the object is allocated to
an agent with type t;. Monetary transfers are not possible, and
all agents strictly prefer to receive the object. Thus, the payoff
of an agent is simply the probability of receiving the object.”
Types are independently distributed with distribution function
F; and corresponding density f;. A profile of types is denoted by
t € T = [,z i The principal can verify agent i at a given cost of
¢;, in which case the type of agent i is perfectly revealed. The goal
of the principal is to maximize the expected value of allocating
the good less the expected cost of verification.

By invoking a revelation principle, it is without loss of general-
ity to consider only direct and incentive compatible mechanisms.
Denote by p; : 7 — [0, 1] the probability that agent i is assigned
the good, and by q; : 7 — [0, 1] the probability that agent i is
verified and assigned the good given that he reported truthfully.
A mechanism is a tuple (p, q) = (pi, qi)iez- A mechanism (p, q) is
feasible if, for all t € 7, Y pi(t) < 1 and gi(t) < pi(t) for each
i € Z. Without loss of generality, we can assume that if an agent
is verified and is lying then he will not be assigned the object.

A mechanism is incentive compatible if truthtelling is an equi-
librium in the game induced by the mechanism. We will consider
both ex-post and Bayesian incentive compatibility.

Definition 1. A mechanism (p, q) is Bayesian incentive compat-
ible (BIC) if, forallie Z and all t;, ] € T;

Et_i [pi(tis t—i)] = Et_,‘ [pl(tl/7 t—f)] - Et_i [ql(t,/7 t—i)]' (1)

The right hand side of Eq. (1) is the probability of being
allocated the object E; [p(t/, t_;)] conditional upon not being
verified minus the probability of being verified E. ,[qi(t], t_;)].
This is the probability of getting an object when an agent of type
t; reports to be of type t] # t;, since once verified agent i does not
get the object. For (p, q) to be incentive compatible this has to be
lower than the probability of getting an object when reporting
the type t; truthfully.

Since the right-hand side of the inequality is independent
of t;, this inequality holds if and only if it holds for the type
that minimizes the left-hand side, for which the left-hand side
assumes the value 1nft~€T E._,[pi(t]’, t_;)]. This characterizes BIC
mechanisms by giving usa lower bound on how often we need to
check an agent with type t; to make an allocation rule p incentive
compatible.

Lemma 1. A mechanism (p, q) is Bayesian incentive compatible
(BIC) if and only if, foralli € T and all t; € T;,

Et_i [qi(tia tfi)] > E[_i[pf(tf9 t*f)] - tén;; E[_i[pi(ti/v t*i)]' (2)
i€7i
The stronger notion of ex-post incentive compatibility re-

quires that Eq. (1) holds pointwise and we get the analogous
characterization of ex-post incentive compatibility.

4 Agents’ cardinal preferences can depend on their types, but intensities of
the agents’ preferences do not play a role in the analysis.

Lemma 2. A mechanism (p, q) is ex-post incentive compatible
(EPIC) if and only if, foralli € Z, all t; € Trand all t_; € T_;

qi(ti, t) > pilti, t) — tigf pilt{, t_p). (3)
i 1

In this note, instead of using the ex-post allocation rule p,
we will use the corresponding interim allocation rule (also called
reduced form) p, where pi(t;) = E; ,[pi(t;, t_;)] and the interim
verification rule g;(t;) = E; ;[qi(t;, t;)]. These are lower dimen-
sional objects and are simpler to maximize over than ex-post
rules. Moving from ex-post allocation rules to interim allocation
rules we need to know whether a given interim allocation rule is
feasible, in the sense that there exists a feasible ex-post allocation
rule that induces p. This question has been answered by Border
(1991) and Mierendorff (2011), who characterized the set of
feasible interim allocation rules: a monotone interim allocation
rule is feasible if and only if, for all (a1, ...,a,) € T,

> [ btwdrce) < 1 - [ Rt

This condition is necessary for an interim allocation rule to be
feasible: the left-hand side, denoting the probability that an agent
i with type above «; wins the object, must clearly be lower
than the probability that there is an agent i with type above «;,
which is written on the right-hand side.” The content of Border’s
theorem is to show that the above condition is also sufficient for
a nondecreasing interim allocation rule to be feasible.

(Border)

3. BIC-EPIC equivalence

In this section we will establish an equivalence between BIC
and EPIC mechanisms. We will first formalize our equivalence
notion, and then state and prove the equivalence theorem.

BDL showed that the optimal BIC mechanism satisfies the
stronger notion of ex-post incentive compatibility.® At first sight
it might be surprising that the optimal mechanism does not use
the extra degrees of freedom that Bayesian incentive constraints
offer in order to save on verification costs. We show that there
is a deeper connection underlying this observation: for any BIC
mechanism (p, q) there exists an “equivalent” EPIC mechanism
(p, g) that induces the same expected verification costs and the
same interim allocation rules. While this equivalence holds in this
model for any mechanism, it fails in model variations with im-
perfect verification, interdependent preferences, or more general
decision problems (see Erlanson and Kleiner (2019)).

To understand the logic behind the equivalence and to com-
pare Bayesian with ex-post incentive constraints, we begin with
averaging the pointwise constraints in (3) by taking expecta-
tions over reports of the other agents. Consequently, any EPIC
mechanism must satisfy

Ee[qi(ti, t-i)] > B [pi(ti, )] — B[ inf pilt], t=)l; (4)
LT

moreover, for any allocation rule p we can define g by q;(t;, t_;) =
pi(ti, t_;) — mft re7: Di(t{, £-;) so that (p, q) is EPIC and satisfies (4)
as an equality.

Note that mf[/ 7 B[t )] > B [infyer pi(t], )], and
hence the right- hand 51de of (4) is in generél larger than the
right-hand side of the Bayesian constraints in (2). Thus, for a

5 We use this direction to construct an upper bound on the objective function
in Section 4.

6 BDL show that the optimal mechanism is dominant-strategy incentive
compatible (DIC). Our equivalence result below extends to DIC instead of EPIC
if we specify more precisely the allocation if an agent is found lying, see BDL.
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given allocation rule p that is BIC with the verification rule g,
we may need to verify agents more frequently to satisfy the
more stringent ex-post incentive constraints. Therefore, in gen-
eral it is more costly to implement an allocation rule in ex-post
equilibrium than in a Bayes Nash equilibrium; only if the expec-
tation operator commutes with the infimum operator, that is if
infti/eTi Ee  [pi(t], t-)] = Etfi[infti/gi pi(t], t_;)], can a rule be im-
plemented at the same verification costs in ex-post equilibrium.
Example 1 illustrates an allocation rule p which requires strictly
more verifications to be implemented in ex-post equilibrium than
in Bayes Nash equilibrium.

Example 1. Suppose that Z = {1, 2} and that each type profile
is equally likely and consider the incentive constraints for agent
2. The allocation rule p, for agent 2 is shown in Fig. 1(a). We
can think of agent 2 as having three intervals to report in, T, T}
and Té" , since the allocation rule is the same for any report in
these three intervals. We first compute the interim allocation
rule as E, [pa(t1, t)] = 0.8 for t € Tk, Eylpa(ts, t2)] = 0.2
for t; € Ti, and E[pa(ts,t)] = 0.4 for t, € TI. To find a
verification rule g, such that p, and g, satisfy BIC, we observe
that infy,er, Er, [p2(t1, t2)] = 0.2. By Lemma 1, BIC is satisfied if
q» satisfies E¢, [qa(t1, t2)] = 0.6 for t; € T, E¢, [q2(t1, £2)] = 0 for
t; € T}, and E, [qo(t1, )] = 0.2 for t, € T3

If we instead want to satisfy the EPIC constraints, the expected
number of verifications and hence the cost of verification in-
creases. To see this, note that infy, py(ty, ;) = 0.2 for t; € TlL,
inf, po(t1, &) = 0 for t; € T}, and infy, po(t1, &) = 0.1 for
t1 € TH. Therefore, E, [inf,, p>(t1, t)] = 0.1 < infy, E, [pa(t1, t)].
Inequality (4) then implies that E; [qx(t1, t2)] > 0.8 — 0.1 for
ty € Th, B [qa(t1, )] = 0.2—0.1 for t; € T}, and Ey, [q2(t1, t2)] =
0.4—0.1fort; € Tf (the verification probabilities for each profile
of reports are given in Fig. 1(b)).

Example 1 shows that for some allocation rules it is strictly
more expensive to implement them in ex-post equilibrium than
in Bayes Nash equilibrium. It is therefore not obvious why the
optimal mechanism in the class of BIC mechanisms is also EPIC.
However, we show below that for any allocation rule p there
exists another allocation rule p, which is equivalent in the sense
that it has the same interim allocation rules and therefore induces
the same expected utilities, such that the expectation operator
commutes with the infimum operator. It follows from our ar-
guments leading to (4) that this rule can be implemented in
ex-post equilibrium using the same expected verification prob-
abilities, and hence the same expected verification costs, that are
necessary to implement it in Bayes Nash equilibrium.

Example 1 (Ctd.). Fig. 2(a) illustrates an allocation rule p, that is
equivalent to p, and for which the expectation operator and the
infimum operator commute. It is readily verified that E, [p,(t;,
)] = Ey, [pa2(ty, £2)] for all t,. Moreover, infy, py(t1, t;) = 0.3 for
t1 € T, inf,, po(t1, &) = 0.3 for t; € T}, and inf,, p2(ty, ) = O for
t1 € TH. Therefore, E, [inf,, po(t1, t)] = 0.2 = infy, E¢, [Pa(t1, t2)]
and we can implement p with EPIC using the same expected
number of verifications that are necessary for BIC. Fig. 2(b) shows
the verification rule that achieves this.

To state our result, we define our equivalence notion formally.
Definition 2. Two mechanisms (p,q) and (p, q) are equiva-

lent if B, [pi(t;, t)] = E. [pi(t;, t—)] and E,_[qi(t;, ;)] =
E: ;[qi(t;, t-;)] for all i and almost every t;.

Theorem 1. For any BIC mechanism (p, q) there exists an equiva-
lent EPIC mechanism (P, q).

To explain our proof approach, suppose that the type space
of each agent is finite. We can then reorder the types so that
E ,[pi(t;, t—;)] is nondecreasing in t; for each i. It then follows
from Theorem 1 in Gershkov et al. (2013) that there exists an
equivalent allocation rule p such that p(t;, t_;) is nondecreasing
in t; for each t_; and i. It follows that inf;, p;(t;, t_;) is attained, for
any choice of t_;, for the smallest reordered type, denoted by t;".
It follows that

E; [igfﬁi(ti, t)] = Ee  [pilt, t-)] = infE, [pi(ti, t-i)];

that is, the expectation operator and the infimum operator com-
mute for p. Step 1 below provides the argument for the case of
infinite type spaces.

We can then define in the second step verification rules
for p that make (p, q) EPIC while satisfying E, [qi(t;, t—)] =
E._[qi(ti, t-)].

Proof of Theorem 1. Let (p, q) be a BIC mechanism. We will
construct an equivalent EPIC mechanism (p, q).

Step 1: Constructing an equivalent allocation rule p such that expec-
tation and infimum commute

We will define a new type space and an allocation rule p’ that
is nondecreasing in its marginals on this new type space. Given
this, we can construct another allocation rule p” that is pointwise
nondecreasing. Finally we will construct the new allocation rule p
using p” and the relation between the original and the new type
space.

Let, for all i € Z, o; 7i — R be defined as oj(t;)) =
E. ,[pi(t;, t—;)] and let the new type space be T = {x € Rloy(t;) =
x for some t; € 7;}, i.e., the new type space 7; is the image of o;.
Denote a type in 7; by ;, and let 7 = [],.; 7i. Let G; denote the
distribution function on the type space 7; such that

GiE) = / aF(t)
ti:Be_; [pi(ti t-)I<t;

Let the allocation rule on the new type space p; : 7 — [0, 1] be
defined such that E;_[pj(f;, t;)] = t; for all ; € T, recall that by
construction f; = E; ,[pi(t;, t_;)] for some t; € 7;. The existence
of such an allocation rule p’ is guaranteed by a characteriza-
tion of interim allocation rules (Mierendorff, 2011).” Thus, the
interim allocation rules of p; are nondecreasing and Theorem 1
in Gershkov et al. (2013) implies that there exists another feasible
allocation rule p/(-, t_;) that is pointwise nondecreasing and has
the same interim allocation rules as pj(-, t_).2 Now we can define
the allocation rules

forallieT.

piti, t—i) = p (oi(t;), o_i(t_;)) for all i € Z. (5)
Note that E._[p](oi(t;), o_i(t-i))] = B ,[p](t. t-)] = B, [p(&:
i) = & = E¢[pi(ti t_)]. Thus, we get that the interim

allocation rules are the same for p and p, that is E;_,[pi(t;, t—;)] =
E._,[pi(t;, t-;)], as desired.

7 Let i denote the measure induced by the cdf. F, we get for all o; € Ti
(setting A; = {t; € Tilt; > a;}:

EidG,' E,‘ = E¢ .pil(t;, t_;)]dFi(t;
Z/A (@) Xijfmm (6. COE(t)

<1=J0n =t~ @ =1 ] Gilew)

The equalities hold by construction and the inequality holds because p is a
feasible interim allocation rule.

8 Gershkov et al. (2013) show that there is an allocation rule providing the
same interim expected utilities (U-equivalence). Since agents in our model only
care about the probability with which they receive the good, this implies that
the new allocation rule is the same interim allocation rule (P-equivalence).
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Fig. 2. BIC-EPIC equivalence.

Because p;’ is pointwise nondecreasing, we obtain that the ex-
pectation operator and the infimum operator commute. Formally,
for arbitrary & > 0,

Vi€ 7o () € Tr : pf (E(E-y), T) < i?fp,(/(f{, ti)+e/2.

Therefore, if we choose & € 7; such that Pr; (fi(t_;) > £') >
1 — £/2 then the fact that p/ is nondecreasing implies

i?fIEE,,- [p} (£, )] < Bz [p}/ (&, £-0)] < Bz, [i?fpé/(ff, i)l +e.

Since ¢ > 0 was arbitrary, we conclude that inf;, E;_[p] (£, t-i)] =
E:_ [inf; p}'(£;, £_5)].
Further by definition of p; we have that p;(t) = p/(o(t)). Thus,
]E[_i[tiig% pilti, t_)] = Er_, [t1127f_1 pi(oi(t;), o_i(t_i))]
= inf [E;_,p](oi(t;), o_i(t_;))] = inf [E, pi(t;, t_;)].
tEeT; tieTi

Step 2: Constructing verification rules q

Now we will construct verification rules §; such that the
mechanism (p, q) is EPIC, i.e., satisfies (3), and induces the same
expected verification costs. The verification rules are defined as

Qiti, t—i) = pi(t;, t_;) — inf pi(t], t_;) for all i € Z. (6)
teTi
By construction, the incentive constraints in (3) hold as equalities,

and it remains to show that the expected verification probabilities
are the same.

Ee [t t-9)] = Ee_[Pilti. t-0)] — B[ inf pi(t/, t-i)]
teTi

= E¢_[pilti, )] — inf E_[pi(t], t-9)]
GeTi

=B [pi(ti. )] — t}g Ec_[pit]. t-3)]

< B [aiti, t-)]

The first equality follows by definition of g;. The second equality
follows from Step 1 and the third by construction of p;. The
inequality follows because (p, q) is BIC. Thus, by possibly adding
verification we can ensure that E;_[§i(t)] = E.[qi(t)]. O

4. Threshold mechanisms are optimal

In this section, we analyze which mechanism maximizes the
expected payoff for the principal. We provide a simple proof
showing that it is optimal to use a threshold mechanism.

The principal’s problem can be stated using interim allocation
rules as

max E [t:Di(ti) — ciqi(t;

Jmax, Z o [tPi(t:) — cidi(t:)]

s.t.inf pi(t)) > piti) — Gi(ti)
teTi

p is feasible

The objective function is the expected payoff for the principal,
taking into account the expected costs of verification. The first
set of constraints are the incentive compatibility constraints, and
the second constraint ensures that the interim allocation rules are
actually implementable.

Note that the objective function is decreasing in § and any
optimal solution therefore satisfies §;(t;) = pi(t;) — inftl_/eTi pit)).
We can then restate the problem as a simpler problem where
we only optimize over interim allocation rules p and use the
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characterization of feasible interim allocation rules:

5?,?3(1 ZEt[ — c)pilti) + G nf Bl

. (Border)

While this problem is not a linear program, we can formulate
a related program that is linear by replacing 1r1ft T pi(t) by i

maXZEt [(t; — ci)pi(ti) + cigil
i
s.t. Pi(t) > i
(Border)
Indeed, if (b, ¢) solves the latter problem, ¢; = infycy; pi(t])

must hold as we could increase ¢; otherwise to obtain a hrgher
objective value. Therefore, p obtains the same objective value in
the former problem. Conversely, if p solves the former problem
we can define ¢; = 1r1f[/€T pi(t/) and then (p, ¢) will obtain the
same value in the latter problem establishing that both problems
achieve the same value.

The last step before solving the problem is to consider net-
types t; — ¢; instead of the original types t;. This gives us an
equivalent formulation of the optimization problem that is no-
tationally easier to work with. Henceforth, with slight abuse of
notation, the type t; is the net-type t; — c;.”

Below, we show that a so-called threshold mechanism is op-
timal. To do so, we show that for any choice of {¢;}; a threshold
mechanism is optimal in the above problem. We therefore ana-
lyze the following parametrized problem'?: Given {¢i}i such that

2iei< 1,
mﬁax Z Eq [tipi(ti)] R)

s.t. Di(t) > ¢
(Border)

Following BDL, we define a threshold mechanism with thresh-
old « to be a mechanism p with the following interim allocation
rule: pi(t;) = ]_[]#FJ(t,) for t; > a and pi(t;) = ¢; otherwise. This
interim allocation rule can be implemented as follows (where i*
denotes the agent with the highest report). If t+ < «, that is, all
agents report below the threshold then each agent i is allocated
the object with probability o @ F )" If t+ > «, then agent i*

verified and conditional that no lre was detected, he receives the
object with probability 1. Let

= inf{a € R |); ¢iFi(e) < []; Fi() and Fi(er) > 0 for all i}

(7)

and denote by p* the threshold mechanism with threshold o*.!!

Given the parameters ¢;, the designer would like to choose the
threshold as low as possible: if all reports are below the thresh-
old, he has to randomize the allocation, whereas he can allocate
to the highest type if at least one report is above the threshold.
However, feasibility requires that the threshold cannot be too

9 Formally, we could define f; = t; — ¢; and write the whole problem in
terms of f. In particular, this would change the distribution of types from F;
to another distribution F; of net types t; — ¢;. Since a threshold mechanism is
optimal independent of the particular distribution, we do not formalize this step.
To simplify notation, we use t; in place of ;.

10 Since ¢;’s are constant we can drop any terms that only involve ¢;’s from
the objective function.

11 The constraint set is nonempty, and hence «* is well-defined, because given
Zi @i < 1, @ = max; t; satisfies all constraints. Note also that, by continuity of
F; and the definition of o*, ", ¢iFi(a*) = [, Fi(e*)

low. We prove below that o* is the lowest threshold that is still
feasible.

The following theorem from BDL is the main step in deriving
the optimal mechanism.

Theorem 2 (Theorem 4 in Ben-Porath et al. (2014)). The threshold
mechanism p* is the essentially unique solution to problem (R), that
is, every solution to this problem equals p* almost everywhere.

Our proof is significantly shorter than the original proof pro-
vided in BDL, provides some insight for the economic properties
of the optimal mechanism, and suggests an approach that might
be applicable in related allocation problems. First, we state and
prove the result using only interim allocation rules. While BDL
use interim allocation rules in some places, for example to state
the incentive constraints, they switch back and forth between
interim allocation rules and ex-post allocation rules, which adds
complexity. Using Border’s characterization of interim allocation
rules allows us to use exclusively interim allocation rules, which
are simpler to analyze. Our second key insight is that the op-
timization problem, written using interim allocation rules, has
a tractable structure. To illustrate this, suppose that each type
space is finite. The optimization problem is then a linear program
and the constraint set is a generalized polymatroid, and it is
well-known that such a problem can be solved by a greedy
algorithm.'? A greedy algorithm makes locally optimal choices,
not taking into account the effect this has on the feasible choices
for other types. For our linear program this implies that the
allocation probability for the highest net type is set as high as
possible, then the allocation probability for the next highest net
type is set as high as possible given the previous choice and so
on. This explains the particular economic structure of the optimal
allocation: the threshold mechanism allocates the object to the
agent with the highest type as long as someone reports above
the threshold. The threshold is chosen so that this mechanism
still satisfies the constraint p;(t;) > ¢;.

Since the type spaces in our model are infinite, the constraint
set is the infinite-dimensional analog of a polymatroid. Our proof
of Theorem 2 therefore follows the outline of arguments show-
ing that a greedy algorithm solves the finite-dimensional linear
program, but adapts these arguments to infinite types. More
specifically, we show in Step 1 that no feasible mechanism can
achieve a higher objective value than the threshold mechanism
p*. To do so, we first derive an upper bound on the objective
function using that any feasible solution must satisfy Border’s
constraints. We then show that p* achieves this bound. In Step 2,
we show that every optimal interim allocation rule must in fact
be equal to p* almost everywhere. Finally, In Step 3 we verify that
p* is a feasible solution by constructing an ex-post allocation rule
inducing the required interim allocation rule and arguing that it
satisfies the incentive constraints.

Proof of Theorem 2.

Step 1: Optimality

We first establish an upper bound for the objective function
and then show that the interim allocation rule p* achieves this
upper bound.

Let p be any feasible interim allocation rule, which therefore
satisfies the Border conditions for all ¢ € R:

> [ steopteads < 1 - [Trca) (8)

12 See, for example, Che et al. (2013).
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Since pi(t;) >

> [ e+ Y [ st <1 - A =

or, equivalently,

Z/ filt)pi(ti)dt; < Zgo,F, ) for all o’ € R. 9)

Denoting t = max;{t;}, we therefore get:
) f " ) B 1
=3 ['195 s)ds
- fo > / '5) Bils) ds da
< /Oa*n - Z(piFi(a)]da + /i[] - HF,-(a)]da, (10)

where the first equality follows from integration by parts, the
second by rearranging terms and the inequality follows from (8)
and (9).

Note that p;(t;) > ¢; implies f[ Fltpi(tt dt; < f[ filt)eit; dt;.
This gives the following upper bound on the objectlve function

for any feasible solution p,

3 / i) Bt 6 dt
Z [fi(a)go,-a]da+ / [1-) wifi(e)da
0 i

- nFi(oz)]da.

¢;, the Border conditions also imply that for all «/,

Z//f, s) pi(s) ds dt;

=Ll

We claim that p* achieves this upper bound because inequality
(10) is binding for p p
First, for o >
ds=1

> [0 a=Y [ s ad+1-[]re)
= " @ilR@") —Fe)]+1-[[Fe)=1-)_ ¢F()

since, by definition of *, >, ¢iFi(a*) = [, Fi(«
we get

Zf lﬁ(ti)f)i(ti) t; dt;
i Y
0 o*
:Z/ Uie)pialde +/ (1- Z‘/’iFi(Ol)]doz
i YL 0 z’
+ / (1 — [ ] File)lder,

which shows that p* is indeed an optimal solution.

X SIRS) Pr(s) ds = 0 [ () T FiS)

— [1; Fi(e). Moreover fora < o*

). Summarizing,

Step 2: Uniqueness
Note that any feasible interim allocation rule p satisfies the
following inequality:

Glaq, ..., o) =

I—HF,ot, H(aq, ..., an).

Since G is monotone, it is differentiable almost everywhere, and
H is differentiable by assumption. Because p* satisfies inequality
(10) as an equality, we conclude that any optimal interim allo-
cation rule must satisfy (10) as an equality as well. Hence, any
optimal interim allocation rule must satisfy, for almost every o >
o*, G(a, ...,a) =H(a,...,a)and that G and H are differentiable
in ; for all i at («, «). Since H is an upper bound for G, this
implies that their derivatives must coincide at (c, ..., a):

= — [ [F@)i).

J#

Moreover, by (8) and p; > ¢;, pi(t;) =
that p equals p* almost everywhere.

Step 3: Feasibility

We will construct a feasible ex-post rule inducing the interim
allocation rule p* and then show that p* satisfies the incentive
constraints.

Consider the following ex-post rule p*. It allocates the object to
the agent with the highest type whenever t; > «* for some j, and
whenever t; < o* for all j it is defined by p}(t) = W.B This
rule induces the interim rule p*. Moreover, it is clearly feasible if
t; > o* for some j. Assuming t; < a* for allj and summing over
all agents, we have that ) pi =3 1_[ ;- By definition of

114 Thus, p* is a

—Dpi(a)fi(a

@; for t; < a*. We conclude

o* and continuity of the F(+)
feasible ex-post rule.
Regarding the incentive constraints, prt) = ga,- forallt; < o
Suppose instead that t, > o*. By definition of «*, Fi(t;) > 0 and
we obtain pi(t;) = ILE \ye will show below that > i) —

Fi(t)
[

Fj(t;) is non- increasmg for all t; > «* and hence ]_[ F(t;) >

S 2 T Fi(@®) F(a*)

S @F(t) for all ¢ > . Thus,
. [ F&) > ¢Ft)
pi(t) = > Z ¢i.

Fi(ti) Fi(ti)
Hence, p* is a feasible solution to (R) To finalize the argument
we now show that the function h(x) :== ), ¢;Fi(x) — []; Fi(x) is
non-increasing for all x > «*. Note flrst that h(e*) = 0; if this

was strictly negative, Fi(a*) > 0 had to hold for all i and we
could decrease o* without violating any of the constraints in (7).

Differentiating h, h'(x) = ), filx [(pi — ]_[j#, Fi(x)] Z fi(X)le;i —
[TuFe)] < Y7 f‘(x) (Y @iFile®) — [T F(e®)] = 0, since
h(a*) = 0. Thus, h( ) < 0 for all X > o and as desired h is

non-increasing for all x > «*. Thus, pi(t;) > ¢; for all t; € 7; and
i € 7, and we conclude that p is feasible in (R). O

References

Ben-Porath, E., Dekel, E., Lipman, B.L, 2014. Optimal allocation with costly
verification. Amer. Econ. Rev. 104, 3779-3813.

Border, K.C., 1991. Implementation of reduced form auctions: a geometric
approach. Econometrica 59, 1175-1187.

13y Fj(e*) = 0 for some j, we define the ex-post rule to always allocate to
the agent with the highest type.
14 For all « > o we have ) ¢iF; < [1;File). Rearrangmg gives
Z, l'l# F(a) < 1. By contmunty of F;, this mequallty holds for a* as well.

i


http://refhub.elsevier.com/S0304-4068(19)30073-4/sb1
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb1
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb1
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb2
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb2
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb2

62 A. Erlanson and A. Kleiner / Journal of Mathematical Economics 84 (2019) 56-62

Che, Y.-K,, Kim, J., Mierendorff, K., 2013. Generalized reduced-form auctions: a
network-flow approach. Econometrica 81, 2487-2520.

Erlanson, A., Kleiner, A., 2019. Costly verification in collective decisions. Working
Paper.

Gershkov, A., Goeree, ]J.K., Kushnir, A., Moldovanu, B., Shi, X., 2013. On the equiv-
alence of Bayesian and dominant strategy implementation. Econometrica 81
(1), 197-220.

Lipman, B., 2015. An elementary proof of the optimality of threshold
mechanisms.

Manelli, A.M., Vincent, D.R, 2010. Bayesian and dominant-strategy imple-
mentation in the independent private-values model. Econometrica 78 (6),
1905-1938.

Mierendorff, K., 2011. Asymmetric reduced form auctions. Econ. Lett. 110 (1),
41-44.

Mierendorff, K., 2016. Optimal dynamic mechanism design with deadlines. J.
Econ. Theory 161, 190-222.

Mookherjee, D., Reichelstein, S., 1992. Dominant strategy implementation of
bayesian incentive compatible allocation rules. J. Econ. Theory 56 (2),
378-399.

Mylovanov, T. Zapechelnyuk, A. 2017. Optimal allocation with ex-post
verification and limited penalties. Amer. Econ. Rev. 107, 2666-2694.

Pai, M., Vohra, R., 2014. Optimal auctions with financially constrained bidders.
J. Econ. Theory 150, 383-425.


http://refhub.elsevier.com/S0304-4068(19)30073-4/sb3
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb3
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb3
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb4
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb4
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb4
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb5
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb5
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb5
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb5
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb5
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb7
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb7
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb7
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb7
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb7
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb8
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb8
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb8
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb9
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb9
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb9
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb10
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb10
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb10
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb10
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb10
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb11
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb11
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb11
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb12
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb12
http://refhub.elsevier.com/S0304-4068(19)30073-4/sb12

	A note on optimal allocation with costly verification
	Introduction
	Model and incentive constraints
	BIC-EPIC equivalence
	Threshold mechanisms are optimal
	References


